Skip to main content
Log in

Glutathione protected bimetallic gold-platinum nanoclusters with near-infrared emission for ratiometric determination of silver ions

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A controlled method to prepare glutathione-protected bimetallic gold-platinum nanoclusters (Au-PtNCs) has been established. The Au-PtNCs show either strong red (625 nm) or near-infrared (NIR, 805 nm) emission. Further characterizations indicated that the average particle size grows from 1.42 to 1.78 nm, the larger particles being responsible for the redshift of emission. The NIR emitted Au-PtNCs are applied as a novel ratiometric probe of Ag(I), which induces a new emission peak at ~635 nm and quenches the initial emission gradually. The determination shows very high selectivity toward Ag(I) among other metal ions. A limit of determination (10 nM) and the linear range (0.10 to 15 μM) are achieved, which is much lower than the EPA mandate of 0.46 μM for Ag(I) in drinking water. The response mechanism is attributed to the fact that the added Ag(I) has been reduced by the core of Au-PtNCs and deposited on the surface, which induces new fluorescence emission around 635 nm. In addition, the ratiometric method is feasible for Ag(I) determination in serum serum with good recovery (between 98.3% and 102.0%, n = 3), showing very high application potential. The present study provides a controlled method to prepare Au-PtNCs with strong red and NIR emission and supplies a novel NIR ratiometric probe of Ag(I).

Graphical abstract

Schematic presentation of the controlled preparation of glutathione-protected bimetallic gold-platinum nanoclusters (Au-PtNCs) with either red or near-infrared (NIR) emission, and application in ratiometric detection of Ag(I) with high selectivity and sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1

Similar content being viewed by others

References

  1. Shang L, Xu J, Nienhaus GU (2019) Recent advances in synthesizing metal nanocluster-based nanocomposites for application in sensing, imaging and catalysis. Nano Today 28:100767

    Article  Google Scholar 

  2. Maity S, Bain D, Patra A (2019) An overview on the current understanding of the photophysical properties of metal nanoclusters and their potential applications. Nanoscale 11:22685–22723

    Article  CAS  Google Scholar 

  3. Liu J, Duchesne PN, Yu M, Jiang X, Ning X, Vinluan RD, Zhang P, Zheng J (2016) Luminescent gold nanoparticles with size-independent emission. Angew Chem Int Ed 55:8894–8898

    Article  CAS  Google Scholar 

  4. Liu H, Hong G, Luo Z, Chen J, Chang J, Gong M, He H, Yang J, Yuan X, Li L, Mu X, Wang J, Mi W, Luo J, Xie J, Zhang XD (2019) Atomic-precision gold clusters for NIR-II imaging. Adv Mater 31:e1901015

    Article  Google Scholar 

  5. Kenry DY, Liu B (2018) Recent advances of optical imaging in the second near-infrared window. Adv Mater 30:e1802394

    Article  CAS  Google Scholar 

  6. Tang Y, Pei F, Lu X, Fan Q, Huang W (2019) Recent advances on Activatable NIR-II fluorescence probes for biomedical imaging. Adv Optical Mater 7:1900917

    Article  CAS  Google Scholar 

  7. Wang G, Murray RW, Menard L, Nuzzo RG (2005) Near-IR luminescence of monolayer-protected metal clusters. J Am Chem Soc 127:812–813

    Article  CAS  Google Scholar 

  8. Chen Y, Montana DM, Wei H, Cordero JM, Schneider M, Guével XL, Chen O, Bruns OT, Bawendi MG (2017) Shortwave infrared in vivo imaging with gold Nanoclusters. Nano Lett 17:6330–6334

    Article  CAS  Google Scholar 

  9. Jin R (2015) Atomically precise metal nanoclusters: stable sizes and optical properties. Nanoscale 7:1549–1565

    Article  CAS  Google Scholar 

  10. Qian H, Jiang DE, Li G, Gayathri C, Das A, Gil RR, Jin R (2012) Monoplatinum doping of gold nanoclusters and catalytic application. J Am Chem Soc 134:16159–16162

    Article  CAS  Google Scholar 

  11. Niihori Y, Kurashige W, Matsuzaki M, Negishi Y (2013) Remarkable enhancement in ligand-exchange reactivity of thiolate-protected Au25 nanoclusters by single Pd atom doping. Nanoscale 5:508–512

    Article  CAS  Google Scholar 

  12. Du Y, Sheng H, Astruc D, Zhu M (2020) Atomically precise Noble metal Nanoclusters as efficient catalysts: a bridge between structure and properties. Chem Rev 120:526–622

    Article  CAS  Google Scholar 

  13. Soldan G, Aljuhani MA, Bootharaju MS, AbdulHalim LG, Parida MR, Emwas AH, Mohammed OF, Bakr OM (2016) Gold doping of silver Nanoclusters: a 26-fold enhancement in the luminescence quantum yield. Angew Chem Int Ed 55:5749–5753

    Article  CAS  Google Scholar 

  14. Wang S, Meng X, Das A, Li T, Song Y, Cao T, Zhu X, Zhu M, Jin R (2014) A 200-fold quantum yield boost in the photoluminescence of silver-doped Ag(x)au(25-x) nanoclusters: the 13th silver atom matters. Angew Chem Int Ed 53:2376–2380

    Article  CAS  Google Scholar 

  15. Wang Y, Liu L, Gong L, Chen Y, Liu J (2018) Reactivity toward Ag+: a general strategy to generate a new emissive center from NIR-emitting gold nanoparticles. J Phys Chem Lett 9:557–562

    Article  CAS  Google Scholar 

  16. Yu X, Zhang CX, Zhang L, Xue YR, Li HW, Wu Y (2018) The construction of a FRET assembly by using gold nanoclusters and carbon dots and their application as a ratiometric probe for cysteine detection. Sens actuators B−Chem 263: 327–335

  17. Li HW, Yue Y, Liu TY, Li D, Wu Y (2013) Fluorescence-enhanced sensing mechanism of BSA-protected small gold-Nanoclusters to silver(I) ions in aqueous solutions. J Phys Chem C 117:16159–61615

    Article  CAS  Google Scholar 

  18. Negishi Y, Nobusada K, Tsukuda T (2005) Glutathione-protected gold clusters revisited: bridging the gap between gold(I)-Thiolate complexes and Thiolate-protected gold Nanocrystals. J Am Chem Soc 127:5261–5270

    Article  CAS  Google Scholar 

  19. Yu CJ, Chen TH, Jiang JY, Tseng WL (2014) Lysozyme-directed synthesis of platinum nanoclusters as a mimic oxidase. Nanoscale 6:9618–9624

    Article  CAS  Google Scholar 

  20. Guével X, Trouillet V, Spies C, Jung G, Schneider M (2012) Synthesis of yellow-emitting platinum Nanoclusters by ligand etching. J Phys Chem C 116:6047–6051

    Article  Google Scholar 

  21. Baral A, Basu K, Ghosh S, Bhattacharyya K, Roy S, Datta A, Banerjee A (2017) Size specific emission in peptide capped gold quantum clusters with tunable photoswitching behavior. Nanoscale 9:4419–4429

    Article  CAS  Google Scholar 

  22. Wang XX, Wu Q, Shan Z, Huang QM (2011) BSA-stabilized au clusters as peroxidase mimetics for use in xanthine detection. Biosens Bioelectron 26:3614–3619

    Article  CAS  Google Scholar 

  23. Yu Y, Zhang Q, Yao Q, Xie J, Lee JY (2014) Architectural design of heterogeneous metallic nanocrystals-principles and processes. Acc Chem Res 47:3530–3540

    Article  CAS  Google Scholar 

  24. Zhao XE, Lei C, Gao Y, Gao H, Zhu S, Yang X, You J, Wang H (2017) A ratiometric fluorescent nanosensor for the detection of silver ions using graphene quantum dots. Sens Actuators B–Chem 253:239–246

    Article  CAS  Google Scholar 

  25. Lee J, Park J, Lee H, Park H, Kim HI, Kim WJ (2015) Fluorescence switch for silver ion detection utilizing dimerization of DNA-Ag nanoclusters. Biosens Bioelectron 68:642–647

    Article  CAS  Google Scholar 

  26. Zhan S, Xu H, Zhan X, Wu Y, Wang L, Lv J, Zhou P (2015) Determination of silver(I) ion based on the aggregation of gold nanoparticles caused by silver-specific DNA, and its effect on the fluorescence of Rhodamine B. Microchim Acta 182:1411–1419

    Article  CAS  Google Scholar 

  27. Wu Z (2012) Anti-galvanic reduction of thiolate-protected gold and silver nanoparticles. Angew Chem Int Ed 51:2934–2938

    Article  CAS  Google Scholar 

  28. Gan Z, Xia N, Wu Z (2018) Discovery, mechanism, and application of Antigalvanic reaction. Acc Chem Res 51:2774–2783

    Article  CAS  Google Scholar 

  29. Sun J, Wu H, Jin Y (2016) Synthesis of thiolated Ag/au bimetallic nanoclusters exhibiting an anti-galvanic reduction mechanism and composition-dependent fluorescence. Nanoscale 6:5449–5457

    Article  Google Scholar 

  30. Xiao Y, Zhou J, Chen M, Wen W, Zhang X, Wang S (2018) Modulation of the optical color of au nanoclusters and its application in ratiometric photoluminescence detection. Chem Commun 54:10467–10470

    Article  CAS  Google Scholar 

  31. Zhang Y, Jiang H, Wang H (2015) Cytidine-stabilized gold nanocluster as a fluorescence turn-on and turn-off probe for dual functional detection of Ag+ and Hg2+. Anal Chim Acta 870:1–7

    Article  CAS  Google Scholar 

  32. Yue Y, Liu TY, Li HW, Liu Z, Wu Y (2012) Microwave-assisted synthesis of BSA-protected small gold nanoclusters and their fluorescence-enhanced sensing of silver(I) ions. Nanoscale 4:2251–2254

    Article  CAS  Google Scholar 

  33. Wu Z, Wang M, Yang J, Zheng X, Cai W, Meng G, Qian H, Wang H, Jin R (2012) Well-defined nanoclusters as fluorescent nanosensors: a case study on Au25 (SG)18. Small 8:2028–2035

    Article  CAS  Google Scholar 

  34. Sun J, Yue Y, Wang P, He H, Jin Y (2013) Facile and rapid synthesis of water-soluble fluorescent gold nanoclusters for sensitive and selective detection of Ag+. J Mater Chem C 1:908–913

    Article  CAS  Google Scholar 

  35. Liu J, Wang S, Wang X (2020) A novel Ratiometric fluorescent probe for Ag+ based on arginine-naphthalene imide. J Mater Eng Perfor 29:5126–5131

    Article  CAS  Google Scholar 

  36. Tabaraki R, Nateghi A (2016) Nitrogen- doped Graphene quantum dots: "turn-off" fluorescent probe for detection of Ag+ ions. J Fluoresc 26:297–305

    Article  CAS  Google Scholar 

  37. Li J, Zuo G, Pan X, Wei W, Qi X, Su T, Dong W (2018) Nitrogen-doped carbon dots as a fluorescent probe for the highly sensitive detection of Ag+ and cell imaging. Luminescence 33:243–248

    Article  CAS  Google Scholar 

  38. Kong L, Chu X, Ling X, Ma G, Yao Y, Meng Y, Liu W (2016) Biocompatible glutathione-capped gold nanoclusters for dual fluorescent sensing and imaging of copper(II) and temperature in human cells and bacterial cells. Microchim Acta 183:2185–2195

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the financial support from the National Natural Science Foundation of China (Nos. 21875085, 21373101 and 91027027) and the Opening Program of the State Key Laboratory of Supramolecular Structure and Materials, Jilin University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Wei Li.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 12077 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, YC., Wang, C., Zhang, CX. et al. Glutathione protected bimetallic gold-platinum nanoclusters with near-infrared emission for ratiometric determination of silver ions. Microchim Acta 188, 50 (2021). https://doi.org/10.1007/s00604-021-04712-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04712-5

Keywords

Navigation