Skip to main content
Log in

Nitrogen- Doped Graphene Quantum Dots: “Turn-off” Fluorescent Probe for Detection of Ag+ Ions

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Highly luminescent nitrogen-doped graphene quantum dots (N-GQDs) were prepared from glucose and ammonia as carbon and nitrogen sources, respectively. The N-GQDs showed a strong emission at 458 nm with excitation at 360 nm. The N-GQDs exhibited analytical potential as sensing probes for silver ions determination. Factors affecting the fluorescence sensing of Ag+ ions such as pH, N-GQDs concentration and incubation time were studied using Box-Behnken experimental design. The optimum conditions were determined as pH 7, N-GQDs concentration 1 mg/mL and time 60 min. It suggested that N-GQDs exhibited high sensitivity and selectivity toward Ag+. The linear range of N-GQDs and the limit of detection (LOD) were 0.2–40 μM and 168 nM, respectively. The N-GQDs-based Ag+ ions sensor was successfully applied to the determination of Ag+ in tap water and real river water samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Barriada JL, Tappin AD, Evans EH, Achterberg EP (2007) Dissolved silver measurements in seawater. TrAC, trends anal. Chem 26(8):809–817

    CAS  Google Scholar 

  2. Ratte HT (1999) Bioaccumulation and toxicity of silver compounds: a review. Environ Toxicol Chem 18:89–108

    Article  CAS  Google Scholar 

  3. Croteau MN, Luoma SN, Valsami-Jones E, Misra SK (2011) Silver bioaccumulation dynamics in a freshwater invertebrate after aqueous and dietary exposures to nanosized and ionic Ag. Environ Sci Technol 45:6600–6607

    Article  PubMed  CAS  Google Scholar 

  4. Shaw JR, Wood CM, Birge WJ, Hogstrand C (1998) Toxicity of silver to the marine teleost (oligocuttus maculosus): effects of salinity and ammonia. Environ Toxicol Chem 17:594–600

    Article  CAS  Google Scholar 

  5. Lai CZ, Fierke MA, Costa RC, Gladysz JA, Stein A, Buhlmann P (2010) Highly selective detection of silver in the low ppt range with ion-selective electrodes based on ionophore-doped fluorous membranes. Anal Chem 82:7634–7640

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Wygladacz K, Radu A, Xu C, Qin Y, Bakker E (2005) Fiber-optic microsensor array based on fluorescent bulk optode microspheres for the trace analysis of silver ions. Anal Chem 77:4706–4712

    Article  PubMed  CAS  Google Scholar 

  7. Chakrapani G, Mahanta PL, Murty DSR, Gomathy B (2001) Preconcentration of traces of gold, silver and palladium on activated carbon and its determination in geological samples by flame AAS after wet ashing. Talanta 53:1139–1147

    Article  PubMed  CAS  Google Scholar 

  8. Dadfarnia S, Haji Shabani AM, Gohari M (2004) Trace enrichment and determination of silver by immobilized DDTC microcolumn and flow injection atomic absorption spectrometry. Talanta 64:682–687

    Article  PubMed  CAS  Google Scholar 

  9. Krachler M, Mohl C, Emons H, Shotyk W (2002) Analytical procedures for the determination of selected trace elements in peat and plant samples by inductively coupled plasma mass spectrometry. Spectrochim. Acta. Part B 57:1277–1289

    Article  Google Scholar 

  10. Yang XJ, Foley R, Low GKC (2002) A modified digestion procedure for analysing silver in environmental water samples. Analyst 127:315–318

    Article  CAS  Google Scholar 

  11. Han WS, Park MY, Chung KC, Cho DH, Hong TK (2001) All solid state hydrogen ion selective electrode based on a tribenzylamineneutral carrier in a poly(vinyl chloride) membrane with a poly(aniline) solid contact. Electroanalysis 13:955–959

    Article  CAS  Google Scholar 

  12. Tan E, Yin P, Lang X, Wang X, You T, Guo L (2012) Functionalized gold nanoparticles as nanosensor for sensitive and selective detection of silver ions and silver nanoparticles by surface enhanced Raman scattering. Analyst 137:3925–3928

    Article  PubMed  CAS  Google Scholar 

  13. Pu W, Zhao H, Huang C. H, Wu L, Xua D (2012) Fluorescent detection of silver(I) and cysteine using SYBR green I and a silver(I)-specific oligonucleotide. Microchim Acta 177: 137–144.

  14. Tang CX, Bu NN, He XW, Yin XB (2011) Functional nucleic acid-based electrochemiluminescent biosensor for interaction study and detection of Ag+ ions and cysteine. Chem Commun 47:12304–12306

    Article  CAS  Google Scholar 

  15. Porchetta A, Vallé e-Bé lisle A, Plaxco KW, Ricci F (2013) Allosterically tunable, DNA-based switches triggered by heavy metals. J Am Chem Soc 135:13238–13241

    Article  PubMed  CAS  Google Scholar 

  16. Lin CY, Yu CJ, Lin YH, Tseng WL (2010) Colorimetric sensing of silver (I) and mercury (II) ions based on an assembly of tween 20-stabilized gold nanoparticles. Anal Chem 82:6830–6837

    Article  PubMed  CAS  Google Scholar 

  17. Zhao C, Qu K, Song Y (2010) A reusable DNA single-walled carbon-nanotube-based fluorescent sensor for highly sensitive and selective detection of Ag + and cysteine in aqueous solutions. Chem Eur J 16:8147–8154

    Article  PubMed  CAS  Google Scholar 

  18. Ho IT, Haung KC, Chung WS (2011) 1, 3- alternate-calix [4] arene as a homobinuclear ditopic fluorescent chemosensor for Ag+ ions. Chem Asian J 6:2738–2746

    Article  PubMed  CAS  Google Scholar 

  19. Liu L, Zhang D, Zhang G, Xiang J, Zhu D (2008) Highly selective ratiometric fluorescence determination of Ag+ based on a molecular motif with one pyrene and two adenine moieties. Org Lett 10:2271–2274

    Article  PubMed  CAS  Google Scholar 

  20. Zhu X, Fu S, Wong WK, Wong WY, Zhu X (2008) A near-infrared fluorescent chemodosimeter for silver (I) ion based on an expanded porphyrin. Tetrahedron Lett 49:1843–1846

    Article  CAS  Google Scholar 

  21. Swamy KMK, Kim HN, Soh JH, Kim Y, Kim SJ, Yoon J (2009) Manipulation Of fluorescent and colorimetric changes of fluorescein derivatives and applications for sensing silver ions. Chem Commun:1234–1236

  22. Liu L, Zhang GX, Xiang JF, Zhang DQ, Zhu DB (2008) Fluorescence “turn on” chemosensors for Ag+ and Hg2+ based on tetraphenylethylene motif featuring adenine and thymine moieties. Org Lett 10(20):4581–4584

    Article  PubMed  CAS  Google Scholar 

  23. Wang F, Nandhakumar R, Moon JH, Kim KM, Lee JY (2011) Ratiometric fluorescent chemosensor for silver ion at physiological pH. Inorg Chem 50:2240–2245

    Article  PubMed  CAS  Google Scholar 

  24. Chatterjee A, Santra M, Won N, Kim S, Kim JK, Kim SB, Ahn KH (2009) Selective fluorogenic and chromogenic probe for detection of silver ions and silver nanoparticles in aqueous media. J Am Chem Soc 131:2040–2041

    Article  PubMed  CAS  Google Scholar 

  25. Libin T, Rongbin J, Xueming L, Gongxun B, Chao PL, Jianhua H, Jingyu L, Hongxing J, Kar Seng T, Zhibin Y, Shu PL (2014) Deep ultraviolet to near-infrared emission and photoresponse in layered N-doped graphene quantum dots. ACS Nano 8:6312–6320

    Article  Google Scholar 

  26. Zhou L, Lin YH, Huang ZZ, Ren JS, Qu XG (2012) Carbon nanodots as fluorescence probes for rapid, sensitive, and label-free detection of Hg2+ and biothiols in complex matrices. Chem Commun 48:1147–1149

    Article  CAS  Google Scholar 

  27. Qian ZS, Wang C, Du GH, Zhou J, Chen CC, Ma JJ, Chen JR, Feng H (2012) Multicolour fluorescent graphene oxide by cutting carbon nanotubes upon oxidation. Cryst Eng Comm 14:4976–4979

    Article  CAS  Google Scholar 

  28. Wen Y, Xing F, He S, Song S, Wang L, Long Y, Fan DL, Fan C (2010) A graphene-based fluorescent nanoprobe for silver(I) ions detection by using graphene oxide and a silver-specific oligonucleotide. Chem Commun 46:2596–2598

    Article  CAS  Google Scholar 

  29. Sun J, Yue Y, Wang P, He HL, Jin YD (2013) Facile and rapid synthesis of water-soluble fluorescent gold nanoclusters for sensitive and selective detection of Ag+. J Mater Chem C 1:908–913

    Article  CAS  Google Scholar 

  30. Wu C, Xiong C, Wang L, Lan C, Ling L (2010) Sensitive and selective localized surface Plasmon resonance light-scattering sensor for Ag+ with unmodified gold nanoparticles. Analyst 135:2682–2687

    Article  PubMed  CAS  Google Scholar 

  31. Qian ZS, Ma JJ, Shan XY, Feng H, Shao LX, Chen JR (2014) Highly luminescent N-doped carbon quantum dots as an effective multifunctional fluorescence sensing platform. Chem Eur J 20:2254–2263

    Article  PubMed  CAS  Google Scholar 

  32. Shen LM, Chen ML, Hu LL, Chen XW, Wang JH (2013) Growth and stabilization of silver nanoparticles on carbon dots and sensing application. Langmuir 29:16135–16140

    Article  PubMed  CAS  Google Scholar 

  33. Xiaohui G, Yizhong L, Ruizhong Z, Shuijian H, Jian J, Minmin L, Lei L, Wei CH (2015) One-pot synthesis of carbon nanodots for fluorescence turn-on detection of Ag+ based on the Ag+ − induced enhancement of fluorescence. J Mater Chem C 3:2302–2309

    Article  Google Scholar 

  34. Suryawanshi A, Biswal M, Mhamane D, Gokhale R, Patil S, Guin D, Ogale S (2014) Large scale synthesis of graphene quantum dots (GQDs) from waste biomass and their use as an efficient and selective photoluminescenceon–off–on probe for Ag+ ions. Nanoscale 6:11664–11670

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Tabaraki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tabaraki, R., Nateghi, A. Nitrogen- Doped Graphene Quantum Dots: “Turn-off” Fluorescent Probe for Detection of Ag+ Ions. J Fluoresc 26, 297–305 (2016). https://doi.org/10.1007/s10895-015-1714-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-015-1714-y

Keywords

Navigation