Skip to main content
Log in

Biocompatible glutathione-capped gold nanoclusters for dual fluorescent sensing and imaging of copper(II) and temperature in human cells and bacterial cells

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Highly red luminescent gold nanoclusters (AuNCs) have been prepared at physiological temperature by using glutathione (GSH) as a stabilizing and capping agent in aqueous media. The resultant AuNCs have been characterized by photoluminescence and X-ray photoelectron spectroscopy, transmission electron microscopy and FTIR. The AuNCs exhibit red fluorescence with a quantum yield of 3.1 %, and fluorescence is strongly quenched by copper(II) ion due to aggregation. This finding is exploited in a fluorometric assay for Cu(II) that has a 2.8 nM detection limit. The method was applied to the determination of Cu(II) ion in (spiked) mineral water and Tai Lake water. In addition, the AuNCs display a strongly temperature-dependent emission that can be used for optical determination of temperature in the 0 to 60 °C range. We finally show that the AuNCs are viable nanomaterials for (a) plain imaging of Hep-2 cells by laser scanning confocal microscopy, and for (b) intracellular imaging of Cu(II) and of temperature in Hep-2 cells and E. coli.

Red luminescent GSH-Au nanoclusters were synthesized and are shown to be viable nanoprobes for copper(II) ion and temperature. They were applied to cellular and bacterial imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Wustoni S, Hideshima S, Kuroiwa S, Nakanishi T, Morib Y, Osaka T (2015) Label-free detection of Cu(II) in a human serum sample by using a prion protein-immobilized FET sensor. Analyst 140:6485–6488

    Article  CAS  Google Scholar 

  2. Que EL, Domaille DW, Chang CJ (2008) Metals in neurobiology: probing their chemistry and biology with molecular imaging. Chem Rev 108:1517–1549

    Article  CAS  Google Scholar 

  3. Zhao W, Jia W, Sun M, Liu X, Zhang Q, Zong C, Qu J, Cai H (2016) Colorimetric detection of Cu2+ by surface coordination complexes of polyethyleneimine-capped Au nanoparticles. Sensors Actuators B-Chem 223:411–416

    Article  CAS  Google Scholar 

  4. Moghadam MR, Jahromi SMP, Darehkordi A (2016) Simultaneous spectrophotometric determination of copper, cobalt, nickel and iron in foodstuffs and vegetables with a new bis thiosemicarbazone ligand using chemometric approaches. Food Chem 192:424–431

    Article  Google Scholar 

  5. Lu X, Zhao Y, Zhang J, Lu X, Wang Y, Liu C (2015) Copper ion-induced fluorescence band shift of CdTe quantum dots: a highly specific strategy for visual detection of Cu2+ with a portable UV lamp. Analyst 140:7859–7863

    Article  CAS  Google Scholar 

  6. Park KS, Kim MI, Woo MA, Park HG (2013) A label-free method for detecting biological thiols based on blocking of Hg2+–quenching of fluorescent gold nanoclusters. Biosens Bioelectron 45:65–69

    Article  Google Scholar 

  7. Li L, Feng J, Fan Y, Tang B (2015) Simultaneous imaging of Zn2+ and Cu2+ in living cells based on DNAzyme modified gold nanoparticle. Anal Chem 87:4829–4835

    Article  CAS  Google Scholar 

  8. Lei C, Wang Z, Nie Z, Deng H, Hu H, Huang Y, Yao S (2015) Resurfaced fluorescent protein as a sensing platform for label-free detection of copper(II) ion and acetylcholinesterase activity. Anal Chem 87:1974–1980

    Article  CAS  Google Scholar 

  9. Shen Q, Zhou L, Yuan Y, Huang Y, Xiang B, Chen C, Nie Z, Yao S (2014) Intra-molecular G-quadruplex structure generated by DNA-templated click chemistry: “Turn-on” fluorescent probe for copper ions. Biosens Bioelectron 55:187–194

    Article  CAS  Google Scholar 

  10. Cao D, Fan J, Qiu J, Tu Y, Yan J (2013) Masking method for improving selectivity of gold nanoclusters in fluorescence determination of mercury and copper ions. Biosens Bioelectron 42:47–50

    Article  CAS  Google Scholar 

  11. Shang L, Dong S (2008) Silver nanocluster-based fluorescent sensors for sensitive detection of Cu(II). J Mater Chem 18:4636–4640

    Article  CAS  Google Scholar 

  12. Tao Y, Li M, Ren J, Qu X (2015) Metal nanoclusters: novel probes for diagnostic and therapeutic applications. Chem Soc Rev 44:8636–8663

    Article  CAS  Google Scholar 

  13. Wolfbeis OS (2015) An overview of nanoparticles commonly used in fluorescent bioimaging. Chem Soc Rev 44:4743–4768

    Article  CAS  Google Scholar 

  14. Stich MIJ, Fischer LH, Wolfbeis OS (2010) Multiple fluorescent chemical sensing and imaging. Chem Rev 39:3102–3114

    Article  CAS  Google Scholar 

  15. Wang C, Wang Y, Xu L, Shi X, Li X, Xu X, Sun H, Yang B, Lin Q (2013) A galvanic replacement route to prepare strongly fluorescent and highly stable gold nanodots for cellular imaging. Small 9:413–420

    Article  CAS  Google Scholar 

  16. Chen Y, Wang Y, Wang C, Li W, Zhou H, Jiao H, Lin Q, Yu C (2013) Papain-directed synthesis of luminescent gold nanoclusters and the sensitive detection of Cu2+. J Colloid Interface Sci 396:63–68

    Article  CAS  Google Scholar 

  17. Couleaud P, Adan-Bermudez S, Aires A, Mejías SH, Sot B, Somoza A, Cortajarena AL (2015) Designed modular proteins as scaffolds to stabilize fluorescent nanoclusters. Biomacromolecules 16:3836–3844

    Article  CAS  Google Scholar 

  18. Xu S, Yang H, Zhao K, Li J, Mei L, Xie Y, Deng A (2015) Preparation of orange-red fluorescent gold nanoclusters using denatured casein as a reductant and stabilizing agent, and their application to imaging of HeLa cells and for the quantitation of mercury(II). Microchim Acta 182:2577–2584

    Article  CAS  Google Scholar 

  19. Wang C, Xu L, Xu X, Cheng H, Sun H, Lin Q, Zhang C (2014) Near infrared Ag/Au alloy nanoclusters: tunable photoluminescence and cellular imaging. J Colloid Interface Sci 416:274–279

    Article  CAS  Google Scholar 

  20. Wang C, Wang Y, Xu L, Zhang D, Liu M, Li X, Sun H, Lin Q, Yang B (2012) Facile aqueous-phase synthesis of biocompatible and fluorescent Ag2S nanoclusters for bioimaging: tunable photoluminescence from red to near infrared. Small 8:3137–3142

    Article  CAS  Google Scholar 

  21. Yang J, Xia N, Wang XA, Liu XH, Xu A, Wu ZK, Luo ZX (2015) One-pot one-cluster synthesis of fluorescent and bio-compatible Ag-14 nanoclusters for cancer cell imaging. Nanoscale 7:18464–18470

    Article  CAS  Google Scholar 

  22. Chen D, Zhao C, Ye J, Li Q, Liu X, Su M, Jiang H, Amatore C, Selke M, Wang X (2015) In situ biosynthesis of fluorescent platinum nanoclusters: toward self-bioimaging-guided cancer theranostics. ACS Appl Mater Interfaces 7:18163–18169

    Article  CAS  Google Scholar 

  23. Wang YW, Tang SR, Yang HH, Song HB (2015) A novel colorimetric assay for rapid detection of cysteine and Hg2+ based on gold clusters. Talanta 146:71–74

    Article  Google Scholar 

  24. Das NK, Ghosh S, Priya A, Datta S, Mukherjee S (2015) Luminescent copper nanoclusters as a specific cell-imaging probe and a selective metal ion sensor. J Phys Chem C 119:24657–24664

    Article  CAS  Google Scholar 

  25. Zheng C, Zheng A, Liu B, Zhang X, He Y, Li J, Yang H, Chen G (2014) One-pot synthesized DNA-templated Ag/Pt bimetallic nanoclusters as peroxidase mimics for colorimetric detection of thrombin. Chem Commun 50:13103–13106

    Article  CAS  Google Scholar 

  26. Wu Z, Jin R (2010) On the ligand’s role in the fluorescence of gold nanoclusters. Nano Lett 10:2568–2573

    Article  CAS  Google Scholar 

  27. Shu T, Su L, Wang J, Li C, Zhang X (2015) Chemical etching of bovine serum albumin-protected Au25 nanoclusters for label-free and separation-free detection of cysteamine. Biosens Bioelectron 66:155–161

    Article  CAS  Google Scholar 

  28. Zhang L, Wang E (2014) Metal nanoclusters: new fluorescent probes for sensors and bioimaging. Nano Today 9:132–157

    Article  CAS  Google Scholar 

  29. Kucsko G, Maurer PC, Yao NY, Kubo M, Noh HJ, Lo PK, Park H, Lukin MD (2013) Nanometre-scale thermometry in a living cell. Nature 500:54–58

    Article  CAS  Google Scholar 

  30. Jaque D, Vetrone F (2012) Luminescence nanothermometry. Nanoscale 4:4301–4326

    Article  CAS  Google Scholar 

  31. Wang X, Wolfbeis OS, Meier RJ (2013) Luminescent probes and sensors for temperature. Chem Soc Rev 42:7834–7869

    Article  CAS  Google Scholar 

  32. Tsuji T, Yoshida S, Yoshida A, Uchiyama S (2013) Cationic fluorescent polymeric thermometers with the ability to enter yeast and mammalian cells for practical intracellular temperature measurements. Anal Chem 85:9815–9823

    Article  CAS  Google Scholar 

  33. Brites CD, Lima PP, Silva NJ, Millan A, Amaral VS, Palacio F, Carlos LD (2013) Ratiometric highly sensitive luminescent nanothermometers working in the room temperature range. Applications to heat propagation in nanofluids. Nanoscale 5:7572–7580

    Article  CAS  Google Scholar 

  34. Kong L, Liu W, Chu X, Yao Y, Zhu P, Ling X (2015) Glutathione-directed synthesis of luminescent Ag2S nanoclusters as nanosensors for copper(II) ion and temperature. RSC Adv 5:80530–80535

    Article  CAS  Google Scholar 

  35. Thiramanas R, Laocharoensuk R (2016) Competitive binding of polyethyleneimine-coated gold nanoparticles to enzymes and bacteria: a key mechanism for low-level colorimetric detection of gram-positive and gram-negative bacteria. Microchim Acta 183:389–396

    Article  CAS  Google Scholar 

  36. Zeng Y, Wan Y, Zhang D (2016) Lysozyme as sensitive reporter for fluorometric and PCR based detection of E. coli and S. aureus using magnetic microbeads. Microchim Acta 183:741–748

    Article  CAS  Google Scholar 

  37. Wang C, Cheng H, Sun Y, Xu Z, Lin H, Lin Q, Zhang C (2015) Nanoclusters prepared from a silver/gold alloy as a fluorescent probe for selective and sensitive determination of lead(II). Microchim Acta 182:695–701

    Article  CAS  Google Scholar 

  38. Guo YM, Wang Z, Qu WS, Shao HW, Jiang XY (2011) Colorimetric detection of mercury, lead and copper ions simultaneously using protein-functionalized gold nanoparticles. Biosens Bioelectron 26:4064–4069

    Article  CAS  Google Scholar 

  39. Yao J, Zhang K, Zhu H, Ma F, Sun M, Yu H, Sun J, Wang S (2013) Efficient ratiometric fluorescence probe based on dual-emission quantum dots hybrid for on-site determination of copper ions. Anal Chem 85:6461–6468

    Article  CAS  Google Scholar 

  40. Yin BC, Ye BC, Tan W, Wang H, Xie CC (2009) An allosteric Dual-DNAzyme unimolecular probe for colorimetric detection of copper(II). J Am Chem Soc 131:14624–14625

    Article  CAS  Google Scholar 

  41. Sun L, Hao D, Shen W, Qian Z, Zhu C (2012) Highly sensitive fluorescent sensor for copper (II) based on amplified fluorescence quenching of a water-soluble NIR emitting conjugated polymer. Microchim Acta 177:357–364

    Article  CAS  Google Scholar 

  42. Cano-Raya C, Fernandez Ramos MD, Capitan Vallvey LF, Wolfbeis OS, Schaeferling M (2005) Fluorescence quenching of the europium tetracycline hydrogen peroxide complex by copper (II) and other metal ions. Appl Spectrosc 59:1209–1216

    Article  CAS  Google Scholar 

  43. Liu J, Liu G, Zang L, Liu W (2015) Calcein-functionalized Fe3O4@SiO2 nanoparticles as a reusable fluorescent nanoprobe for copper(II) ion. Microchim Acta 182:547–555

    Article  CAS  Google Scholar 

  44. Zhong Y, Zhu J, Wang Q, He Y, Ge Y, Song C (2015) Copper nanoclusters coated with bovine serum albumin as a regenerable fluorescent probe for copper(II) ion. Microchim Acta 182:909–915

    Article  CAS  Google Scholar 

  45. Negishi Y, Nobusada K, Tsukuda T (2005) Glutathione-protected gold clusters revisited: bridging the gap between gold(I)-thiolate complexes and thiolate-protected gold nanocrystals. J Am Chem Soc 127:5261–5270

    Article  CAS  Google Scholar 

  46. Xie J, Zheng Y, Ying JY (2009) Protein-directed synthesis of highly fluorescent gold nanoclusters. J Am Chem Soc 131:888–889

    Article  CAS  Google Scholar 

  47. Zhou C, Sun C, Yu M, Qin Y, Wang J, Kim M, Zheng J (2010) Luminescent gold nanoparticles with mixed valence states generated from dissociation of polymeric Au(I) thiolates. J Phys Chem C 114:7727–7732

    Article  CAS  Google Scholar 

  48. Zhang J, Yuan Y, Liang G, Arshad MN, Albar HA, Sobahic TR, Yu SH (2015) A microwave-facilitated rapid synthesis of gold nanoclusters with tunable optical properties for sensing ions and fluorescent ink. Chem Commun 51:10539–10542

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Health Bureau Foundation of Wuxi City, China (MS201524). We also acknowledge support from Wuxi Center for Disease Control and Prevention, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lingcan Kong or Wenwei Liu.

Ethics declarations

The author(s) declare that they have no competing interests

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1823 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, L., Chu, X., Ling, X. et al. Biocompatible glutathione-capped gold nanoclusters for dual fluorescent sensing and imaging of copper(II) and temperature in human cells and bacterial cells. Microchim Acta 183, 2185–2195 (2016). https://doi.org/10.1007/s00604-016-1854-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-1854-z

Keywords

Navigation