Skip to main content
Log in

Electrodes modified with 3D graphene composites: a review on methods for preparation, properties and sensing applications

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Three-dimensional (3D) porous networks of planar 2D graphene have attractive features with respect to sensing. These include a large electroactive surface area, good inner and outer surface contact with the analyte, ease of loading with (bio)catalysts, and good electrochemical sensitivity. 3D free-standing graphene can even be used directly as an electrode. This review (with 140 refs.) covers the progress made in the past years. Following an introduction into the field (including definitions), a large section is presented that covers methods for the synthesis of 3D graphene (3DG) (including chemical vapor deposition, hydrothermal methods, lithography, support assisted synthesis and chemical deposition, and direct electrochemical methods). The next section covers the key features of 3DG and its composites for use in electrochemical sensors. This section is subdivided into sections on the uses of 3D porous graphene, 3DG composites with metals and metal oxides, composites consisting of 3DG and organic polymers, and electrodes modified with 3DG, 3DGs decorated with carbon nanotubes, and others. The review concludes with a discussion of future perspectives and current challenges.

A schematic of the key characteristics of three-dimensional (3D) graphene

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191. https://doi.org/10.1038/nmat1849

    Article  CAS  PubMed  Google Scholar 

  2. Yang S, Li Y, Wang S et al (2018) Advances in the use of carbonaceous materials for the electrochemical determination of persistent organic pollutants. A review. Microchim Acta 185:112. https://doi.org/10.1007/s00604-017-2638-9

    Article  CAS  Google Scholar 

  3. Goutham S, Bykkam S, Sadasivuni KK et al (2018) Room temperature LPG resistive sensor based on the use of a few-layer graphene/SnO2 nanocomposite. Microchim Acta 185:69. https://doi.org/10.1007/s00604-017-2537-0

    Article  CAS  Google Scholar 

  4. Kawde A-N, Baig N, Sajid M (2016) Graphite pencil electrodes as electrochemical sensors for environmental analysis: a review of features, developments, and applications. RSC Adv 6:91325–91340. https://doi.org/10.1039/C6RA17466C

    Article  CAS  Google Scholar 

  5. Geim AK (2009) Graphene: status and prospects. Science (80- ) 324:1530–1534. https://doi.org/10.1126/science.1158877

    Article  CAS  Google Scholar 

  6. Bollella P, Fusco G, Tortolini C et al (2017) Beyond graphene: electrochemical sensors and biosensors for biomarkers detection. Biosens Bioelectron 89:152–166. https://doi.org/10.1016/j.bios.2016.03.068

    Article  CAS  PubMed  Google Scholar 

  7. Nair RR, Blake P, Grigorenko AN et al (2008) Fine structure constant defines visual transparency of graphene. Science (80- ) 320:1308–1308. https://doi.org/10.1126/science.1156965

    Article  CAS  Google Scholar 

  8. Cao X, Yin Z, Zhang H (2014) Three-dimensional graphene materials: preparation, structures and application in supercapacitors. Energy Environ Sci 7:1850–1865. https://doi.org/10.1039/C4EE00050A

    Article  CAS  Google Scholar 

  9. Pumera M, Ambrosi A, Bonanni A et al (2010) Graphene for electrochemical sensing and biosensing. TrAC Trends Anal Chem 29:954–965. https://doi.org/10.1016/j.trac.2010.05.011

    Article  CAS  Google Scholar 

  10. Brownson DAC, Banks CE (2010) Graphene electrochemistry: an overview of potential applications. Analyst 135:2768. https://doi.org/10.1039/c0an00590h

    Article  CAS  PubMed  Google Scholar 

  11. Gan T, Hu S (2011) Electrochemical sensors based on graphene materials. Microchim Acta 175:1–19. https://doi.org/10.1007/s00604-011-0639-7

    Article  CAS  Google Scholar 

  12. Martín A, Escarpa A (2017) Tailor designed exclusive carbon nanomaterial electrodes for off-chip and on-chip electrochemical detection. Microchim Acta 184:307–313. https://doi.org/10.1007/s00604-016-2020-3

    Article  CAS  Google Scholar 

  13. Stankovich S, Dikin DA, Dommett GHB et al (2006) Graphene-based composite materials. Nature 442:282–286. https://doi.org/10.1038/nature04969

    Article  CAS  PubMed  Google Scholar 

  14. Cinti S, Arduini F (2017) Graphene-based screen-printed electrochemical (bio)sensors and their applications: efforts and criticisms. Biosens Bioelectron 89:107–122. https://doi.org/10.1016/j.bios.2016.07.005

    Article  CAS  PubMed  Google Scholar 

  15. Zhu C, Yang G, Li H et al (2015) Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal Chem 87:230–249. https://doi.org/10.1021/ac5039863

    Article  CAS  PubMed  Google Scholar 

  16. Mkhoyan KA, Contryman AW, Silcox J et al (2009) Atomic and electronic structure of graphene-oxide. Nano Lett 9:1058–1063. https://doi.org/10.1021/nl8034256

    Article  CAS  Google Scholar 

  17. Chen D, Feng H, Li J (2012) Graphene oxide: preparation, functionalization, and electrochemical applications. Chem Rev 112:6027–6053. https://doi.org/10.1021/cr300115g

    Article  CAS  PubMed  Google Scholar 

  18. Baig N, Kawde A-N (2015) A novel, fast and cost effective graphene-modified graphite pencil electrode for trace quantification of <scp>l</scp> −tyrosine. Anal Methods 7:9535–9541. https://doi.org/10.1039/C5AY01753J

    Article  CAS  Google Scholar 

  19. Gómez-Navarro C, Meyer JC, Sundaram RS et al (2010) Atomic structure of reduced graphene oxide. Nano Lett 10:1144–1148. https://doi.org/10.1021/nl9031617

    Article  CAS  PubMed  Google Scholar 

  20. Pei S, Cheng H-M (2012) The reduction of graphene oxide. Carbon N Y 50:3210–3228. https://doi.org/10.1016/j.carbon.2011.11.010

    Article  CAS  Google Scholar 

  21. Sun H, Wu L, Wei W, Qu X (2013) Recent advances in graphene quantum dots for sensing. Mater Today 16:433–442. https://doi.org/10.1016/j.mattod.2013.10.020

    Article  CAS  Google Scholar 

  22. Wu C, Huang X, Wang G et al (2013) Highly conductive nanocomposites with three-dimensional, compactly interconnected graphene networks via a self-assembly process. Adv Funct Mater 23:506–513. https://doi.org/10.1002/adfm.201201231

    Article  CAS  Google Scholar 

  23. Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240. https://doi.org/10.1039/B917103G

    Article  CAS  PubMed  Google Scholar 

  24. Joung D, Khondaker SI (2013) Structural evolution of reduced graphene oxide of varying carbon sp 2 fractions investigated via coulomb blockade transport. J Phys Chem C 117:26776–26782. https://doi.org/10.1021/jp408387b

    Article  CAS  Google Scholar 

  25. Wang Y, Hu A (2014) Carbon quantum dots: synthesis, properties and applications. J Mater Chem C 2:6921. https://doi.org/10.1039/C4TC00988F

    Article  CAS  Google Scholar 

  26. Pan D, Zhang J, Li Z, Wu M (2010) Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv Mater 22:734–738. https://doi.org/10.1002/adma.200902825

    Article  CAS  PubMed  Google Scholar 

  27. Zhang C, Wei K, Zhang W et al (2017) Graphene oxide quantum dots incorporated into a thin film nanocomposite membrane with high flux and antifouling properties for low-pressure nanofiltration. ACS Appl Mater Interfaces 9:11082–11094. https://doi.org/10.1021/acsami.6b12826

    Article  CAS  PubMed  Google Scholar 

  28. Sinha A, Dhanjai JR et al (2018) Voltammetric sensing based on the use of advanced carbonaceous nanomaterials: a review. Microchim Acta 185:89. https://doi.org/10.1007/s00604-017-2626-0

    Article  CAS  Google Scholar 

  29. De Adhikari A, Oraon R, Tiwari SK et al (2018) CdS-CoFe 2 O 4 @Reduced graphene oxide nanohybrid: an excellent electrode material for supercapacitor applications. Ind Eng Chem Res 57:1350–1360. https://doi.org/10.1021/acs.iecr.7b04885

    Article  CAS  Google Scholar 

  30. He Y, Chen W, Li X et al (2013) Freestanding three-dimensional graphene/MnO 2 composite networks as ultralight and flexible supercapacitor electrodes. ACS Nano 7:174–182. https://doi.org/10.1021/nn304833s

    Article  CAS  PubMed  Google Scholar 

  31. Dong X-C, Xu H, Wang X-W et al (2012) 3D graphene–cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. ACS Nano 6:3206–3213. https://doi.org/10.1021/nn300097q

    Article  CAS  PubMed  Google Scholar 

  32. Zhang H, Gai P, Cheng R et al (2013) Self-assembly synthesis of a hierarchical structure using hollow nitrogen-doped carbon spheres as spacers to separate the reduced graphene oxide for simultaneous electrochemical determination of ascorbic acid, dopamine and uric acid. Anal Methods 5:3591. https://doi.org/10.1039/c3ay40572a

    Article  CAS  Google Scholar 

  33. Li Z-F, Zhang H, Liu Q et al (2013) Fabrication of high-surface-area graphene/polyaniline nanocomposites and their application in supercapacitors. ACS Appl Mater Interfaces 5:2685–2691. https://doi.org/10.1021/am4001634

    Article  CAS  PubMed  Google Scholar 

  34. Cui F, Zhang X (2012) Electrochemical sensor for epinephrine based on a glassy carbon electrode modified with graphene/gold nanocomposites. J Electroanal Chem 669:35–41. https://doi.org/10.1016/j.jelechem.2012.01.021

    Article  CAS  Google Scholar 

  35. Liu H, Chen X, Huang L et al (2014) Palladium nanoparticles embedded into graphene nanosheets: preparation, characterization, and nonenzymatic electrochemical detection of H 2 O 2. Electroanalysis 26:556–564. https://doi.org/10.1002/elan.201300428

    Article  CAS  Google Scholar 

  36. Rakhi RB, Chen W, Cha D, Alshareef HN (2011) High performance supercapacitors using metal oxide anchored graphene nanosheet electrodes. J Mater Chem 21:16197. https://doi.org/10.1039/c1jm12963e

    Article  CAS  Google Scholar 

  37. Li M, Tang Z, Leng M, Xue J (2014) Flexible solid-state supercapacitor based on graphene-based hybrid films. Adv Funct Mater 24:7495–7502. https://doi.org/10.1002/adfm.201402442

    Article  CAS  Google Scholar 

  38. Fu K, Wang Y, Mao L et al (2016) Facile one-pot synthesis of graphene-porous carbon nanofibers hybrid support for Pt nanoparticles with high activity towards oxygen reduction. Electrochim Acta 215:427–434. https://doi.org/10.1016/j.electacta.2016.08.111

    Article  CAS  Google Scholar 

  39. Nardecchia S, Carriazo D, Ferrer ML et al (2013) Three dimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene: synthesis and applications. Chem Soc Rev 42:794–830. https://doi.org/10.1039/C2CS35353A

    Article  CAS  PubMed  Google Scholar 

  40. Li C, Zhang X, Wang K et al (2015) Three dimensional graphene networks for supercapacitor electrode materials. New Carbon Mater 30:193–206. https://doi.org/10.1016/S1872-5805(15)60185-8

    Article  CAS  Google Scholar 

  41. Song Y-Y, Zhang D, Gao W, Xia X-H (2005) Nonenzymatic glucose detection by using a three-dimensionally ordered, macroporous platinum template. Chem Eur J 11:2177–2182. https://doi.org/10.1002/chem.200400981

    Article  CAS  PubMed  Google Scholar 

  42. Niu X, Lan M, Zhao H, Chen C (2013) Highly sensitive and selective nonenzymatic detection of glucose using three-dimensional porous nickel nanostructures. Anal Chem 85:3561–3569. https://doi.org/10.1021/ac3030976

    Article  CAS  PubMed  Google Scholar 

  43. Wang D-W, Li F, Liu M et al (2008) 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angew Chemie Int Ed 47:373–376. https://doi.org/10.1002/anie.200702721

    Article  Google Scholar 

  44. Li J, Cassell A, Delzeit L et al (2002) Novel three-dimensional electrodes: electrochemical properties of carbon nanotube ensembles. J Phys Chem B 106:9299–9305. https://doi.org/10.1021/jp021201n

    Article  CAS  Google Scholar 

  45. Wang L, Zhang Y, Yu J et al (2017) A green and simple strategy to prepare graphene foam-like three-dimensional porous carbon/Ni nanoparticles for glucose sensing. Sensors Actuators B Chem 239:172–179. https://doi.org/10.1016/j.snb.2016.06.173

    Article  CAS  Google Scholar 

  46. Varley TS, Hirani M, Harrison G, Holt KB (2014) Nanodiamond surface redox chemistry: influence of physicochemical properties on catalytic processes. Faraday Discuss 172:349–364. https://doi.org/10.1039/C4FD00041B

    Article  CAS  PubMed  Google Scholar 

  47. Qin D, Gao S, Wang L et al (2017) Three-dimensional carbon nanofiber derived from bacterial cellulose for use in a Nafion matrix on a glassy carbon electrode for simultaneous voltammetric determination of trace levels of Cd(II) and Pb(II). Microchim Acta 184:2759–2766. https://doi.org/10.1007/s00604-017-2260-x

    Article  CAS  Google Scholar 

  48. Huang D, Li X, Wang S et al (2017) Three-dimensional chemically reduced graphene oxide templated by silica spheres for ammonia sensing. Sensors Actuators B Chem 252:956–964. https://doi.org/10.1016/j.snb.2017.05.117

    Article  CAS  Google Scholar 

  49. Yong Y-C, Dong X-C, Chan-Park MB et al (2012) Macroporous and monolithic anode based on polyaniline hybridized three-dimensional graphene for high-performance microbial fuel cells. ACS Nano 6:2394–2400. https://doi.org/10.1021/nn204656d

    Article  CAS  PubMed  Google Scholar 

  50. Prasad KP, Chen Y, Chen P (2014) Three-dimensional graphene-carbon nanotube hybrid for high-performance enzymatic biofuel cells. ACS Appl Mater Interfaces 6:3387–3393. https://doi.org/10.1021/am405432b

    Article  CAS  PubMed  Google Scholar 

  51. Wu Z-S, Sun Y, Tan Y-Z et al (2012) Three-dimensional graphene-based macro- and mesoporous frameworks for high-performance electrochemical capacitive energy storage. J Am Chem Soc 134:19532–19535. https://doi.org/10.1021/ja308676h

    Article  CAS  PubMed  Google Scholar 

  52. Paek S, Yoo E, Honma I (2009) Enhanced cyclic performance and lithium storage capacity of SnO 2 /Graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. Nano Lett 9:72–75. https://doi.org/10.1021/nl802484w

    Article  CAS  PubMed  Google Scholar 

  53. Zhang Y, Chu M, Yang L et al (2014) Three-dimensional graphene networks as a new substrate for immobilization of laccase and dopamine and its application in glucose/O 2 biofuel cell. ACS Appl Mater Interfaces 6:12808–12814. https://doi.org/10.1021/am502791h

    Article  CAS  PubMed  Google Scholar 

  54. Luo J, Liu J, Zeng Z et al (2013) Three-dimensional graphene foam supported Fe 3 O 4 lithium battery anodes with long cycle life and high rate capability. Nano Lett 13:6136–6143. https://doi.org/10.1021/nl403461n

    Article  CAS  PubMed  Google Scholar 

  55. Lee SH, Kim HW, Hwang JO et al (2010) Three-dimensional self-assembly of graphene oxide platelets into mechanically flexible macroporous carbon films. Angew Chemie Int Ed 49:10084–10088. https://doi.org/10.1002/anie.201006240

    Article  CAS  Google Scholar 

  56. Xu Y, Lin Z, Huang X et al (2013) Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films. ACS Nano 7:4042–4049. https://doi.org/10.1021/nn4000836

    Article  CAS  PubMed  Google Scholar 

  57. Cao X, Shi Y, Shi W et al (2013) Preparation of MoS 2 -coated three-dimensional graphene networks for high-performance anode material in lithium-ion batteries. Small 9:3433–3438. https://doi.org/10.1002/smll.201202697

    Article  CAS  PubMed  Google Scholar 

  58. Ito Y, Tanabe Y, Sugawara K et al (2017) Three-dimensional porous graphene networks expand graphene-based electronic device applications. Phys Chem Chem Phys. https://doi.org/10.1039/C7CP07667C

  59. Yang Y, Kang M, Fang S et al (2015) Electrochemical biosensor based on three-dimensional reduced graphene oxide and polyaniline nanocomposite for selective detection of mercury ions. Sensors Actuators B Chem 214:63–69. https://doi.org/10.1016/j.snb.2015.02.127

    Article  CAS  Google Scholar 

  60. Dong X, Cao Y, Wang J et al (2012) Hybrid structure of zinc oxide nanorods and three dimensional graphene foam for supercapacitor and electrochemical sensor applications. RSC Adv 2:4364. https://doi.org/10.1039/c2ra01295b

    Article  CAS  Google Scholar 

  61. Fang Q, Shen Y, Chen B (2015) Synthesis, decoration and properties of three-dimensional graphene-based macrostructures: a review. Chem Eng J 264:753–771. https://doi.org/10.1016/j.cej.2014.12.001

    Article  CAS  Google Scholar 

  62. Xia XH, Chao DL, Zhang YQ et al (2014) Three-dimensional graphene and their integrated electrodes. Nano Today 9:785–807. https://doi.org/10.1016/j.nantod.2014.12.001

    Article  CAS  Google Scholar 

  63. Sherrell PC, Mattevi C (2016) Mesoscale design of multifunctional 3D graphene networks. Mater Today 19:428–436. https://doi.org/10.1016/j.mattod.2015.12.004

    Article  CAS  Google Scholar 

  64. Xi F, Zhao D, Wang X, Chen P (2013) Non-enzymatic detection of hydrogen peroxide using a functionalized three-dimensional graphene electrode. Electrochem Commun 26:81–84. https://doi.org/10.1016/j.elecom.2012.10.017

    Article  CAS  Google Scholar 

  65. Cao X, Shi Y, Shi W et al (2011) Preparation of novel 3D graphene networks for supercapacitor applications. Small 7:3163–3168. https://doi.org/10.1002/smll.201100990

    Article  CAS  PubMed  Google Scholar 

  66. Chen Z, Ren W, Gao L et al (2011) Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat Mater 10:424–428. https://doi.org/10.1038/nmat3001

    Article  CAS  PubMed  Google Scholar 

  67. Cao X, Zeng Z, Shi W et al (2013) Three-Dimensional Graphene Network Composites for Detection of Hydrogen Peroxide. Small 9:1703–1707. https://doi.org/10.1002/smll.201200683

    Article  CAS  PubMed  Google Scholar 

  68. Dong X, Wang X, Wang L et al (2012) 3D graphene foam as a monolithic and macroporous carbon electrode for electrochemical sensing. ACS Appl Mater Interfaces 4:3129–3133. https://doi.org/10.1021/am300459m

    Article  CAS  PubMed  Google Scholar 

  69. Di Bernardo I, Avvisati G, Chen C et al (2018) Topology and doping effects in three-dimensional nanoporous graphene. Carbon N Y 131:258–265. https://doi.org/10.1016/j.carbon.2018.01.076

    Article  CAS  Google Scholar 

  70. Wang X, Zhang Y, Zhi C et al (2013) Three-dimensional strutted graphene grown by substrate-free sugar blowing for high-power-density supercapacitors. Nat Commun 4:1–8. https://doi.org/10.1038/ncomms3905

    Article  CAS  Google Scholar 

  71. Yuan M, Liu A, Zhao M et al (2014) Bimetallic PdCu nanoparticle decorated three-dimensional graphene hydrogel for non-enzymatic amperometric glucose sensor. Sensors Actuators B Chem 190:707–714. https://doi.org/10.1016/j.snb.2013.09.054

    Article  CAS  Google Scholar 

  72. Xu Y, Sheng K, Li C, Shi G (2010) Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 4:4324–4330. https://doi.org/10.1021/nn101187z

    Article  CAS  PubMed  Google Scholar 

  73. Chen P, Yang J-J, Li S-S et al (2013) Hydrothermal synthesis of macroscopic nitrogen-doped graphene hydrogels for ultrafast supercapacitor. Nano Energy 2:249–256. https://doi.org/10.1016/j.nanoen.2012.09.003

    Article  CAS  Google Scholar 

  74. Xiao X, Roberts ME, Wheeler DR et al (2010) Increased mass transport at lithographically defined 3-D porous carbon electrodes. ACS Appl Mater Interfaces 2:3179–3184. https://doi.org/10.1021/am1006595

    Article  CAS  PubMed  Google Scholar 

  75. Xiao X, Beechem T, Wheeler DR et al (2014) Lithographically defined porous Ni–carbon nanocomposite supercapacitors. Nano 6:2629–2633. https://doi.org/10.1039/C3NR05751H

    Article  CAS  Google Scholar 

  76. Xiao X, Beechem TE, Brumbach MT et al (2012) Lithographically defined three-dimensional graphene structures. ACS Nano 6:3573–3579. https://doi.org/10.1021/nn300655c

    Article  CAS  PubMed  Google Scholar 

  77. Byeon JH, Park D, Kim JY (2015) An aerosol-based soft lithography to fabricate nanoscale silver dots and rings for spectroscopic applications. Nano 7:2271–2275. https://doi.org/10.1039/C4NR07476A

    Article  CAS  Google Scholar 

  78. Liu F, Piao Y, Choi JS, Seo TS (2013) Three-dimensional graphene micropillar based electrochemical sensor for phenol detection. Biosens Bioelectron 50:387–392. https://doi.org/10.1016/j.bios.2013.06.055

    Article  CAS  PubMed  Google Scholar 

  79. Sun G, Lu J, Ge S et al (2013) Ultrasensitive electrochemical immunoassay for carcinoembryonic antigen based on three-dimensional macroporous gold nanoparticles/graphene composite platform and multienzyme functionalized nanoporous silver label. Anal Chim Acta 775:85–92. https://doi.org/10.1016/j.aca.2013.03.009

    Article  CAS  PubMed  Google Scholar 

  80. Choi BG, Yang M, Hong WH et al (2012) 3D macroporous graphene frameworks for supercapacitors with high energy and power densities. ACS Nano 6:4020–4028. https://doi.org/10.1021/nn3003345

    Article  CAS  PubMed  Google Scholar 

  81. Shao Q, Tang J, Lin Y et al (2013) Synthesis and characterization of graphene hollow spheres for application in supercapacitors. J Mater Chem A 1:15423. https://doi.org/10.1039/c3ta12789c

    Article  CAS  Google Scholar 

  82. Yu B, Kuang D, Liu S et al (2014) Template-assisted self-assembly method to prepare three-dimensional reduced graphene oxide for dopamine sensing. Sensors Actuators B Chem 205:120–126. https://doi.org/10.1016/j.snb.2014.08.038

    Article  CAS  Google Scholar 

  83. Luo J, Ma Q, Gu H et al (2015) Three-dimensional graphene-polyaniline hybrid hollow spheres by layer-by-layer assembly for application in supercapacitor. Electrochim Acta 173:184–192. https://doi.org/10.1016/j.electacta.2015.05.053

    Article  CAS  Google Scholar 

  84. Gao W (2015) The chemistry of graphene oxide. graphene oxide. Springer International Publishing, Cham, pp 61–95

    Google Scholar 

  85. Sheng K, Sun Y, Li C et al (2012) Ultrahigh-rate supercapacitors based on eletrochemically reduced graphene oxide for ac line-filtering. Sci Rep 2:247. https://doi.org/10.1038/srep00247

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Chen K, Chen L, Chen Y et al (2012) Three-dimensional porous graphene-based composite materials: electrochemical synthesis and application. J Mater Chem 22:20968. https://doi.org/10.1039/c2jm34816k

    Article  CAS  Google Scholar 

  87. Shi F, Xi J, Hou F et al (2016) Application of three-dimensional reduced graphene oxide-gold composite modified electrode for direct electrochemistry and electrocatalysis of myoglobin. Mater Sci Eng C 58:450–457. https://doi.org/10.1016/j.msec.2015.08.049

    Article  CAS  Google Scholar 

  88. Cui M, Xu B, Hu C et al (2013) Direct electrochemistry and electrocatalysis of glucose oxidase on three-dimensional interpenetrating, porous graphene modified electrode. Electrochim Acta 98:48–53. https://doi.org/10.1016/j.electacta.2013.03.040

    Article  CAS  Google Scholar 

  89. Sun W, Hou F, Gong S et al (2015) Direct electrochemistry and electrocatalysis of hemoglobin on three-dimensional graphene modified carbon ionic liquid electrode. Sensors Actuators B Chem 219:331–337. https://doi.org/10.1016/j.snb.2015.05.015

    Article  CAS  Google Scholar 

  90. Zhu C, Han TY-J, Duoss EB et al (2015) Highly compressible 3D periodic graphene aerogel microlattices. Nat Commun 6:6962. https://doi.org/10.1038/ncomms7962

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Jeon MS, Jeon Y, Hwang JH et al (2018) Fabrication of three-dimensional porous carbon scaffolds with tunable pore sizes for effective cell confinement. Carbon N Y 130:814–821. https://doi.org/10.1016/j.carbon.2018.01.050

    Article  CAS  Google Scholar 

  92. Shi Q, Cha Y, Song Y et al (2016) 3D graphene-based hybrid materials: synthesis and applications in energy storage and conversion. Nano 8:15414–15447. https://doi.org/10.1039/C6NR04770J

    Article  CAS  Google Scholar 

  93. Zhang R, Cao Y, Li P et al (2014) Three-dimensional porous graphene sponges assembled with the combination of surfactant and freeze-drying. Nano Res 7:1477–1487. https://doi.org/10.1007/s12274-014-0508-x

    Article  CAS  Google Scholar 

  94. Lu L, Guo L, Kang T, Cheng S (2017) A gold electrode modified with a three-dimensional graphene-DNA composite for sensitive voltammetric determination of dopamine. Microchim Acta 184:2949–2957. https://doi.org/10.1007/s00604-017-2267-3

    Article  CAS  Google Scholar 

  95. Wang G, Wang B, Wang X et al (2009) Sn/graphene nanocomposite with 3D architecture for enhanced reversible lithium storage in lithium ion batteries. J Mater Chem 19:8378. https://doi.org/10.1039/b914650d

    Article  CAS  Google Scholar 

  96. Liu L, Feng T, Wang C et al (2014) Magnetic three-dimensional graphene nanoparticles for the preconcentration of endocrine-disrupting phenols. Microchim Acta 181:1249–1255. https://doi.org/10.1007/s00604-014-1234-5

    Article  CAS  Google Scholar 

  97. Amiri A, Ghaemi F (2017) Microextraction in packed syringe by using a three-dimensional carbon nanotube/carbon nanofiber–graphene nanostructure coupled to dispersive liquid-liquid microextraction for the determination of phthalate esters in water samples. Microchim Acta 184:3851–3858. https://doi.org/10.1007/s00604-017-2416-8

    Article  CAS  Google Scholar 

  98. Chen Z, Li H, Tian R et al (2016) Three dimensional graphene aerogels as binder-less, freestanding, elastic and high-performance electrodes for lithium-ion batteries. Sci Rep 6:27365. https://doi.org/10.1038/srep27365

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. Chen M, Hou C, Huo D et al (2017) A sensitive electrochemical DNA biosensor based on three-dimensional nitrogen-doped graphene and Fe 3 O 4 nanoparticles. Sensors Actuators B Chem 239:421–429. https://doi.org/10.1016/j.snb.2016.08.036

    Article  CAS  Google Scholar 

  100. Baig N, Sajid M (2017) Applications of layered double hydroxides based electrochemical sensors for determination of environmental pollutants: a review. Trends Environ Anal Chem 16:1–15. https://doi.org/10.1016/j.teac.2017.10.003

    Article  CAS  Google Scholar 

  101. Yu X, Lu B, Xu Z (2014) Super long-life supercapacitors based on the construction of nanohoneycomb-like strongly coupled CoMoO 4 -3D graphene hybrid electrodes. Adv Mater 26:1044–1051. https://doi.org/10.1002/adma.201304148

    Article  CAS  PubMed  Google Scholar 

  102. Baig N, Kawde A-N (2016) A cost-effective disposable graphene-modified electrode decorated with alternating layers of Au NPs for the simultaneous detection of dopamine and uric acid in human urine. RSC Adv 6:80756–80765. https://doi.org/10.1039/C6RA10055D

    Article  CAS  Google Scholar 

  103. Yu X, Sheng K, Shi G (2014) A three-dimensional interpenetrating electrode of reduced graphene oxide for selective detection of dopamine. Analyst 139:4525–4531. https://doi.org/10.1039/C4AN00604F

    Article  CAS  PubMed  Google Scholar 

  104. Ruiyi L, Haiyan Z, Zaijun L, Junkang L (2018) Electrochemical determination of acetaminophen using a glassy carbon electrode modified with a hybrid material consisting of graphene aerogel and octadecylamine-functionalized carbon quantum dots. Microchim Acta 185:145. https://doi.org/10.1007/s00604-018-2688-7

    Article  CAS  Google Scholar 

  105. Gao X, Yue H, Song S et al (2018) 3-Dimensional hollow graphene balls for voltammetric sensing of levodopa in the presence of uric acid. Microchim Acta 185:91. https://doi.org/10.1007/s00604-017-2644-y

    Article  CAS  Google Scholar 

  106. Zhang X, Ju H, Wang J, Zhang X (2008) Nitric oxide (NO) electrochemical sensors. Electrochem. Sensors, Biosens. their Biomed. Appl. Elsevier, pp 1–29

  107. Ng SR, Guo CX, Li CM (2011) Highly sensitive nitric oxide sensing using three-dimensional graphene/ionic liquid nanocomposite. Electroanalysis 23:442–448. https://doi.org/10.1002/elan.201000344

    Article  CAS  Google Scholar 

  108. Kawde A-N, Aziz MA, El-Zohri M et al (2017) Cathodized gold nanoparticle-modified graphite pencil electrode for non-enzymatic sensitive voltammetric detection of glucose. Electroanalysis 29:1214–1221. https://doi.org/10.1002/elan.201600709

    Article  CAS  Google Scholar 

  109. Kawde A-N, Aziz M, Baig N, Temerk Y (2015) A facile fabrication of platinum nanoparticle-modified graphite pencil electrode for highly sensitive detection of hydrogen peroxide. J Electroanal Chem 740:68–74. https://doi.org/10.1016/j.jelechem.2015.01.005

    Article  CAS  Google Scholar 

  110. Yuan Y, Zheng Y, Liu J et al (2017) Non-enzymatic amperometric hydrogen peroxide sensor using a glassy carbon electrode modified with gold nanoparticles deposited on CVD-grown graphene. Microchim Acta 184:4723–4729. https://doi.org/10.1007/s00604-017-2499-2

    Article  CAS  Google Scholar 

  111. Wang L, Qin K, Li J et al (2018) Doping and controllable pore size enhanced electrochemical performance of free-standing 3D graphene films. Appl Surf Sci 427:598–604. https://doi.org/10.1016/j.apsusc.2017.08.204

    Article  CAS  Google Scholar 

  112. Zhu Q, Bao J, Huo D et al (2017) 3D Graphene hydrogel – gold nanoparticles nanocomposite modified glassy carbon electrode for the simultaneous determination of ascorbic acid, dopamine and uric acid. Sensors Actuators B Chem 238:1316–1323. https://doi.org/10.1016/J.SNB.2016.09.116

    Article  CAS  Google Scholar 

  113. Kung C-C, Lin P-Y, Buse FJ et al (2014) Preparation and characterization of three dimensional graphene foam supported platinum–ruthenium bimetallic nanocatalysts for hydrogen peroxide based electrochemical biosensors. Biosens Bioelectron 52:1–7. https://doi.org/10.1016/j.bios.2013.08.025

    Article  CAS  PubMed  Google Scholar 

  114. Maiyalagan T, Dong X, Chen P, Wang X (2012) Electrodeposited Pt on three-dimensional interconnected graphene as a free-standing electrode for fuel cell application. J Mater Chem 22:5286. https://doi.org/10.1039/c2jm16541d

    Article  CAS  Google Scholar 

  115. Dechtrirat D, Sookcharoenpinyo B, Prajongtat P et al (2018) An electrochemical MIP sensor for selective detection of salbutamol based on a graphene/PEDOT:PSS modified screen printed carbon electrode. RSC Adv 8:206–212. https://doi.org/10.1039/C7RA09601A

    Article  CAS  Google Scholar 

  116. Mazloum-Ardakani M, Barazesh B, Khoshroo A et al (2018) A new composite consisting of electrosynthesized conducting polymers, graphene sheets and biosynthesized gold nanoparticles for biosensing acute lymphoblastic leukemia. Bioelectrochemistry 121:38–45. https://doi.org/10.1016/j.bioelechem.2017.12.010

    Article  CAS  PubMed  Google Scholar 

  117. Wang M-H, Ji B-W, Gu X-W et al (2018) Direct electrodeposition of graphene enhanced conductive polymer on microelectrode for biosensing application. Biosens Bioelectron 99:99–107. https://doi.org/10.1016/j.bios.2017.07.030

    Article  CAS  PubMed  Google Scholar 

  118. Lei W, Si W, Xu Y et al (2014) Conducting polymer composites with graphene for use in chemical sensors and biosensors. Microchim Acta 181:707–722. https://doi.org/10.1007/s00604-014-1160-6

    Article  CAS  Google Scholar 

  119. Tanaka Y, Oda S, Yamaguchi H et al (2007) 15 N− 15 N J -coupling across Hg II : direct observation of Hg II -mediated T−T base pairs in a DNA duplex. J Am Chem Soc 129:244–245. https://doi.org/10.1021/ja065552h

    Article  CAS  PubMed  Google Scholar 

  120. Peng DL, Ji HF, Dong XD et al (2016) Highly sensitive electrochemical bioassay for Hg(II) detection based on plasma-polymerized propargylamine and three-dimensional reduced graphene oxide nanocomposite. Plasma Chem Plasma Process 36:1051–1065. https://doi.org/10.1007/s11090-016-9707-4

    Article  CAS  Google Scholar 

  121. Liu J, Wang J, Wang T et al (2015) Three-dimensional electrochemical immunosensor for sensitive detection of carcinoembryonic antigen based on monolithic and macroporous graphene foam. Biosens Bioelectron 65:281–286. https://doi.org/10.1016/j.bios.2014.10.016

    Article  CAS  PubMed  Google Scholar 

  122. Cheng Q, Tang J, Ma J et al (2011) Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density. Phys Chem Chem Phys 13:17615. https://doi.org/10.1039/c1cp21910c

    Article  CAS  PubMed  Google Scholar 

  123. Liu J, Wang X, Wang T et al (2014) Functionalization of monolithic and porous three-dimensional graphene by one-step chitosan electrodeposition for enzymatic biosensor. ACS Appl Mater Interfaces 6:19997–20002. https://doi.org/10.1021/am505547f

    Article  CAS  PubMed  Google Scholar 

  124. Fernandes R, Wu L-Q, Chen T et al (2003) Electrochemically induced deposition of a polysaccharide hydrogel onto a patterned surface. Langmuir 19:4058–4062. https://doi.org/10.1021/la027052h

    Article  CAS  Google Scholar 

  125. Luo X-L, Xu J-J, Du Y, Chen H-Y (2004) A glucose biosensor based on chitosan–glucose oxidase–gold nanoparticles biocomposite formed by one-step electrodeposition. Anal Biochem 334:284–289. https://doi.org/10.1016/j.ab.2004.07.005

    Article  CAS  PubMed  Google Scholar 

  126. Maaoui H, Singh SK, Teodorescu F et al (2017) Copper oxide supported on three-dimensional ammonia-doped porous reduced graphene oxide prepared through electrophoretic deposition for non-enzymatic glucose sensing. Electrochim Acta 224:346–354. https://doi.org/10.1016/j.electacta.2016.12.078

    Article  CAS  Google Scholar 

  127. Tian Y, Wei Z, Zhang K et al (2017) Three-dimensional phosphorus-doped graphene as an efficient metal-free electrocatalyst for electrochemical sensing. Sensors Actuators B Chem 241:584–591. https://doi.org/10.1016/j.snb.2016.10.113

    Article  CAS  Google Scholar 

  128. Xu J, Wang Y, Hu S (2017) Nanocomposites of graphene and graphene oxides: synthesis, molecular functionalization and application in electrochemical sensors and biosensors. A review. Microchim Acta 184:1–44. https://doi.org/10.1007/s00604-016-2007-0

    Article  CAS  Google Scholar 

  129. Chen M, Su H, Mao L et al (2018) Highly sensitive electrochemical DNA sensor based on the use of three-dimensional nitrogen-doped graphene. Microchim Acta 185:51. https://doi.org/10.1007/s00604-017-2588-2

    Article  CAS  Google Scholar 

  130. Mazaheri M, Aashuri H, Simchi A (2017) Three-dimensional hybrid graphene/nickel electrodes on zinc oxide nanorod arrays as non-enzymatic glucose biosensors. Sensors Actuators B Chem 251:462–471. https://doi.org/10.1016/j.snb.2017.05.062

    Article  CAS  Google Scholar 

  131. Kim B-J, Yang G, Joo Park M et al (2013) Three-dimensional graphene foam-based transparent conductive electrodes in GaN-based blue light-emitting diodes. Appl Phys Lett 102:161902. https://doi.org/10.1063/1.4801763

    Article  CAS  Google Scholar 

  132. Lv W, Tao Y, Ni W et al (2011) One-pot self-assembly of three-dimensional graphene macroassemblies with porous core and layered shell. J Mater Chem 21:12352. https://doi.org/10.1039/c1jm11728a

    Article  CAS  Google Scholar 

  133. Jiang X, Ma Y, Li J et al (2010) Self-assembly of reduced graphene oxide into three-dimensional architecture by divalent ion linkage. J Phys Chem C 114:22462–22465. https://doi.org/10.1021/jp108081g

    Article  CAS  Google Scholar 

  134. Stankovich S, Dikin DA, Piner RD et al (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon N Y 45:1558–1565. https://doi.org/10.1016/j.carbon.2007.02.034

    Article  CAS  Google Scholar 

  135. Shao Y, Wang J, Engelhard M et al (2010) Facile and controllable electrochemical reduction of graphene oxide and its applications. J Mater Chem 20:743–748. https://doi.org/10.1039/B917975E

    Article  CAS  Google Scholar 

  136. Erickson K, Erni R, Lee Z et al (2010) Determination of the local chemical structure of graphene oxide and reduced graphene oxide. Adv Mater 22:4467–4472. https://doi.org/10.1002/adma.201000732

    Article  CAS  PubMed  Google Scholar 

  137. Li N, Zhang Q, Gao S et al (2013) Three-dimensional graphene foam as a biocompatible and conductive scaffold for neural stem cells. Sci Rep 3:1604. https://doi.org/10.1038/srep01604

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  138. Dong X, Wang J, Wang J et al (2012) Supercapacitor electrode based on three-dimensional graphene–polyaniline hybrid. Mater Chem Phys 134:576–580. https://doi.org/10.1016/j.matchemphys.2012.03.066

    Article  CAS  Google Scholar 

  139. Yang Z, Yan C, Liu J et al (2015) Designing 3D graphene networks via a 3D-printed Ni template. RSC Adv 5:29397–29400. https://doi.org/10.1039/C5RA03454J

    Article  CAS  Google Scholar 

  140. Yang Z, Chabi S, Xia Y, Zhu Y (2015) Preparation of 3D graphene-based architectures and their applications in supercapacitors. Prog Nat Sci Mater Int 25:554–562. https://doi.org/10.1016/j.pnsc.2015.11.010

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support provided by the Chemistry Department at King Fahd University of Petroleum and Minerals (KFUPM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadeem Baig.

Ethics declarations

The author(s) declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baig, N., Saleh, T.A. Electrodes modified with 3D graphene composites: a review on methods for preparation, properties and sensing applications. Microchim Acta 185, 283 (2018). https://doi.org/10.1007/s00604-018-2809-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2809-3

Keywords

Navigation