Skip to main content
Log in

Highly Sensitive Electrochemical Bioassay for Hg(II) Detection Based on Plasma-Polymerized Propargylamine and Three-Dimensional Reduced Graphene Oxide Nanocomposite

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

In this study, a nanocomposite consisting of three-dimensional reduced graphene oxide (3D-rGO) and plasma-polymerized propargylamine (3D-rGO@PpPG) was prepared and used as a highly sensitive and selective DNA sensor for detecting Hg2+. Given the high density of amino groups in the resultant 3D-rGO@PpPG nanocomposite, thymine-rich and Hg2+-targeted DNA was preferentially immobilized on the fabricated sensor surface via the strong electrostatic interaction between DNA strands and the amino-functionalized nanocomposites, followed by detecting Hg2+ through T–Hg2+–T coordination chemistry between DNA and Hg2+. The results of electrochemical measurements revealed that the anchored amount of DNA strands anchored on the 3D-rGO@PpPG nanofilm surface affects the determination of Hg2+ in aqueous solution. It showed high sensitivity and selectivity toward Hg2+ within concentrations ranging from 0.1 to 200 nM and displayed a low detection limit of 0.02 nM. The new strategy proposed also provides high selectivity of Hg2+ against other interfering metal ions, good stability, and repeatability. The excellent applicability of the developed sensor confirms the potential use of plasma-modified nanofilms for the detection of heavy metal ions in real environmental samples and water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yoon S, Miller EW, He Q, Do PH, Chang CJ (2007) A bright and specific fluorescent sensor for mercury in water, cells, and tissue. Angew Chem Int Ed 46:6658–6661

    Article  CAS  Google Scholar 

  2. Clarkson TW, Laszlo M, Myers GJ (2003) The toxicology of mercury—current exposures and clinical manifestations. New Engl J Med 349:1731–1737

    Article  CAS  Google Scholar 

  3. Harris HH, Pickering IJ, George GN (2003) The chemical form of mercury in fish. Science 301:1203

    Article  CAS  Google Scholar 

  4. Morel FM, Kraepiel AM, Amyot M (1998) The chemical cycle and bioaccumulation of mercury. Annu Rev Ecol Evol Syst 29:543–566

    Article  Google Scholar 

  5. Caballero A, Martínez R, Lloveras V, Ratera I, Vidal-Gancedo J, Wurst K, Tárraga A, Molina P, Veciana J (2005) Highly selective chromogenic and redox or fluorescent sensors of Hg2+ in aqueous environment based on 1, 4-disubstituted azines. J Am Chem Soc 127:15666–15667

    Article  CAS  Google Scholar 

  6. Chen P, He C (2004) A general strategy to convert the MerR family proteins into highly sensitive and selective fluorescent biosensors for metal ions. J Am Chem Soc 126:728–729

    Article  CAS  Google Scholar 

  7. Coronado E, Galan-Mascaros JR, Marti-Gastaldo C, Palomares E, Durrant JR, Vilar R, Gratzel M, Nazeeruddin MK (2005) Reversible colorimetric probes for mercury sensing. J Am Chem Soc 127:12351–12356

    Article  CAS  Google Scholar 

  8. Guo X, Qian X, Jia L (2004) A highly selective and sensitive fluorescent chemosensor for Hg2+ in neutral buffer aqueous solution. J Am Chem Soc 126:2272–2273

    Article  CAS  Google Scholar 

  9. Nolan MA, Kounaves SP (1999) Microfabricated array of iridium microdisks as a substrate for direct determination of Cu2+ or Hg2+ using square-wave anodic stripping voltammetry. Anal Chem 71:3567–3573

    Article  CAS  Google Scholar 

  10. Xu L, Yin H, Ma W, Kuang H, Wang L, Xu C (2015) Ultrasensitive SERS detection of mercury based on the assembled gold nanochains. Biosens Bioelectron 67:472–476

    Article  CAS  Google Scholar 

  11. Angupillai S, Hwang JY, Lee JY, Rao BA, Son YA (2015) Efficient rhodamine-thiosemicarbazide-based colorimetric/fluorescent ‘turn-on’ chemodosimeters for the detection of Hg2+ in aqueous samples. Sensor Actuat B Chem 214:101–110

    Article  CAS  Google Scholar 

  12. Hong YS, Rifkin E, Bouwer EJ (2011) Combination of diffusive gradient in a thin film probe and IC-ICP-MS for the simultaneous determination of CH3Hg+ and Hg2+ in Oxic Water. Environ Sci Technol 45:6429–6436

    Article  CAS  Google Scholar 

  13. Liu S, Kang M, Yan F, Peng D, Yang Y, He L, Wang M, Fang S, Zhang Z (2015) Electrochemical DNA biosensor based on microspheres of cuprous oxide and nano-chitosan for Hg(II) detection. Electrochim Acta 160:64–73

    Article  CAS  Google Scholar 

  14. Tanaka Y, Oda S, Yamaguchi H, Kondo Y, Kojima C, Ono A (2007) 15N-15NJ-coupling across Hg II: direct observation of Hg II-mediated TT base pairs in a DNA duplex. J Am Chem Soc 129:244–245

    Article  CAS  Google Scholar 

  15. Miyake Y, Togashi H, Tashiro M, Yamaguchi H, Oda S, Kudo M, Tanaka Y, Kondo Y, Sawa R, Fujimoto T (2006) MercuryII-mediated formation of thymine-Hg II-thymine base pairs in DNA duplexes. J Am Chem Soc 128:2172–2173

    Article  CAS  Google Scholar 

  16. Chang CC, Lin S, Wei SC, Chu SY, Lin CW (2012) Surface plasmon resonance detection of silver ions and cysteine using DNA intercalator-based amplification. Anal Bioanal Chem 402:2827–2835

    Article  CAS  Google Scholar 

  17. Huy GD, Zhang M, Zuo P, Ye BC (2011) Multiplexed analysis of silver(I) and mercury(II) ions using oligonucletide-metal nanoparticle conjugates. Analyst 136:3289–3294

    Article  CAS  Google Scholar 

  18. Li T, Dong S, Wang E (2010) A lead (II)-driven DNA molecular device for turn-on fluorescence detection of lead (II) ion with high selectivity and sensitivity. J Am Chem Soc 132:13156–13157

    Article  CAS  Google Scholar 

  19. Yang X, Xu J, Tang X, Liu H, Tian D (2010) A novel electrochemical DNAzyme sensor for the amplified detection of Pb2+ ions. Chem Communications 46:3107–3109

    Article  CAS  Google Scholar 

  20. Chen J, Zhou X, Zeng L (2013) Enzyme-free strip biosensor for amplified detection of Pb2+ based on a catalytic DNA circuit. Chem Commun 49:984–986

    Article  CAS  Google Scholar 

  21. Long Y, Jiang D, Zhu X, Wang J, Zhou F (2009) Trace Hg2+ analysis via quenching of the fluorescence of a CdS-encapsulated DNA nanocomposite. Anal Chem 81:2652–2657

    Article  CAS  Google Scholar 

  22. Ding X, Kong L, Wang J, Fang F, Li D, Liu J (2013) Highly sensitive SERS detection of Hg2+ ions in aqueous media using gold nanoparticles/graphene heterojunctions. ACS Appl Mater Interfaces 5:7072–7078

    Article  CAS  Google Scholar 

  23. Liu X, Tang Y, Wang L, Zhang J, Song S, Fan C, Wang S (2007) Optical detection of mercury (II) in aqueous solutions by using conjugated polymers and label-free oligonucleotides. Adv Mater 19:1471–1474

    Article  CAS  Google Scholar 

  24. Peng H, Zhang L, Soeller C, Travas-Sejdic J (2009) Conducting polymers for electrochemical DNA sensing. Biomater 30:2132–2148

    Article  CAS  Google Scholar 

  25. Goddard JM, Hotchkiss J (2007) Polymer surface modification for the attachment of bioactive compounds. Prog Poly Sci 32:698–725

    Article  CAS  Google Scholar 

  26. Qiu S, Gao S, Liu Lin Z, Qiu B, Chen G (2011) Electrochemical impedance spectroscopy sensor for ascorbic acid based on copper (I) catalyzed click chemistry. Biosensor Bioelectron 26:4326–4330

    Article  CAS  Google Scholar 

  27. Liu C, Li F, Ma LP, Cheng HM (2010) Advanced materials for energy storage. Adv Mater 22:E28–E62

    Article  CAS  Google Scholar 

  28. Pumera M (2011) Graphene-based nanomaterials for energy storage. Energy Environ Sci 4:668–674

    Article  CAS  Google Scholar 

  29. Wang Y, Li Z, Wang J, Li J, Lin Y (2011) Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends Biotech 29:205–212

    Article  Google Scholar 

  30. Shao Y, Wang J, Wu H, Liu J, Aksay IA, Lin Y (2010) Graphene based electrochemical sensors and biosensors: a review. Electroanal 22:1027–1103

    Article  CAS  Google Scholar 

  31. Cao X, Shi Y, Shi W, Lu G, Huang X, Yan Q, Zhang Q, Zhang H (2011) Preparation of novel 3D graphene networks for supercapacitor applications. Small 7:3163–3168

    Article  CAS  Google Scholar 

  32. Xu Y, Wu Q, Sun Y, Bai H, Shi G (2010) Three-dimensional self-assembly of graphene oxide and DNA into multifunctional hydrogels. ACS Nano 4:7358–7362

    Article  CAS  Google Scholar 

  33. He L, Zhang Y, Liu S, Fang S, Zhang Z (2014) A nanocomposite consisting of plasma-polymerized propargylamine and graphene for use in DNA sensing. Microchim Acta 181:1981–1989

    Article  CAS  Google Scholar 

  34. Yang Y, Kang M, Fang S, Wang M, He L, Zhao J, Zhang H, Zhang Z (2015) Electrochemical biosensor based on three-dimensional reduced graphene oxide and polyaniline nanocomposite for selective detection of mercury ions. Sensor Actuator B-Chem 214:63–69

    Article  CAS  Google Scholar 

  35. Marx KA (2003) Quartz crystal microbalance: a useful tool for studying thin polymer films and complex biomolecular systems at the solution-surface interface. Biomacromolecules 4:1099–1120

    Article  CAS  Google Scholar 

  36. Pajkossy T (1994) Impedance of rough capacitive electrodes. J Electroanal Chem 364:111–125

    Article  CAS  Google Scholar 

  37. Wang M, Wang L, Yuan H, Ji X, Sun C, Ma L, Bai Y, Li T, Li J (2004) Immunosensors based on layer-by-layer self-assembled au colloidal electrode for the electrochemical detection of antigen. Electroanalysis 16:757–764

    Article  CAS  Google Scholar 

  38. Levie DR (1965) The influence of surface roughness of solid electrodes on electrochemical measurements. Electrochim Acta 10:113–130

    Article  Google Scholar 

  39. Yuan Y, Gao M, Liu G, Chai Y, Wei S, Yuan R (2014) Sensitive pseudobienzyme electrocatalytic DNA biosensor for mercury(II) ion by using the autonomously assembled hemin/G-quadruplex DNAzyme nanowires for signal amplification. Anal Chim Acta 811:23–28

    Article  CAS  Google Scholar 

  40. Liu S, Nie H, Jiang J, Shen G, Yu R (2009) Electrochemical sensor for mercury (II) based on conformational switch mediated by interstrand cooperative coordination. Anal Chem 81:5724–5730

    Article  CAS  Google Scholar 

  41. Noorbakhsh A, Salimi A (2011) Development of DNA electrochemical biosensor based on immobilization of ssDNA on the surface of nickel oxide nanoparticles modified glassy carbon electrode. Biosensor Bioelectron 30:188–196

    Article  CAS  Google Scholar 

  42. Seah M (1980) The quantitative analysis of surfaces by XPS: a review. Surf Interface Anal 2:222–239

    Article  CAS  Google Scholar 

  43. Dementjev A, De Graaf A, Van de Sanden M, Maslakov K, Naumkin A, Serov A (2000) X-ray photoelectron spectroscopy reference data for identification of the C3N4 phase in carbon–nitrogen films. Diam Relat Mater 9:1904–1907

    Article  CAS  Google Scholar 

  44. Wang P, Kang M, Sun S, Liu Q, Zhang Z, Fang S (2014) Imine-linked covalent organic framework on surface for biosensor. Chin J Inorg Chem 32:838–843

    Article  CAS  Google Scholar 

  45. Cai S, Lao K, Lau C, Lu J (2011) “Turn-on” chemiluminescence sensor for the highly selective and ultrasensitive detection of Hg2+ ions based on interstrand cooperative coordination and catalytic formation of gold nanoparticles. Anal Chem 83:9702–9708

    Article  CAS  Google Scholar 

  46. Lou X, Zhao T, Liu R, Ma J, Xiao Y (2013) Self-assembled DNA monolayer buffered dynamic ranges of mercuric electrochemical sensor. Anal Chem 85:7574–7580

    Article  CAS  Google Scholar 

  47. Dong ZM, Zhao GC (2012) Quartz crystal microbalance aptasensor for sensitive detection of mercury(II) based on signal amplification with gold nanoparticles. Sensors 12:7080–7094

    Article  CAS  Google Scholar 

  48. Lu X, Dong X, Zhang K, Zhang Y (2012) An ultrasensitive electrochemical mercury (II) ion biosensor based on a glassy carbon electrode modified with multi-walled carbon nanotubes and gold nanoparticles. Anal Methods 4:3326–3331

    Article  CAS  Google Scholar 

  49. Wang M, Liu S, Zhang Y, Yang Y, Shi Y, He L, Fang S, Zhang Z (2014) Graphene nanostructures with plasma polymerized allylamine biosensor for selective detection of mercury ions. Sensor Actuator B-Chem 203:497–503

    Article  CAS  Google Scholar 

  50. Xu JL, Khor KA (2007) Chemical analysis of silica doped hydroxyapatite biomaterials consolidated by a spark plasma sintering method. J Inorg Biochem 101:187–195

    Article  CAS  Google Scholar 

  51. Guo YF, Yan NQ, Yang SJ, Liu P, Wa J, Qu Z, Jia JP (2012) Conversion of elemental mercury with a novel membrane catalytic system at low temperature. J Hazard Mater 213–214:62–70

    Article  Google Scholar 

  52. Stoica A, Manakhov A, Polčák J, Ondračka P, BuršíkováV Zajíčková R, Zajíčková L, Stoica A, Manakhov A (2015) Cell proliferation on modified DLC thin films prepared by plasma enhanced chemical vapor deposition Cell proliferation on modified DLC thin films prepared by plasma enhanced chemical vapor deposition. Biointerphases 10:029520–029529

    Article  Google Scholar 

  53. Manakhov A, Nečas D, Čechal J, Pavliňák D, Eliáš M, Zajíčková L (2015) Deposition of stable amine coating onto polycaprolactone nanofibers by low pressure cyclopropylamine plasma polymerization. Thin Solid Films 581:7–13

    Article  CAS  Google Scholar 

  54. Manakhov A, Skládal P, Nečas D, Čechal J, Polčák J, Eliáš M, Zajíčková L (2014) Cyclopropylamine plasma polymers deposited onto quartz crystal microbalance for biosensing application. Phys Status Solidi 211:2801–2808

    Article  CAS  Google Scholar 

  55. Kingshot P, Thissen H, Griesser H (2002) Effects of cloud-point grafting, chain length, and densityof PEG layers on competitive adsorption of ocular proteins. Biomaterials 23:2043–2056

    Article  Google Scholar 

  56. Majumder S, Priyadarshini M, Subudhi U, Chainy GBN, Shikha V (2009) X-ray photoelectron spectroscopic investigations of modifacations in plasmid DNA after interaction with Hg nanoparticles. Appl Surf Sci 256:438–442

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Program for the National Natural Science Foundation of China (NSFC: Account No. 51173172), Science and Technology Opening Cooperation Project of Henan Province (Account No. 132106000076), and Innovative Technology Team of Henan Province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Z. Z. Zhang or S. M. Fang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1487 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, D.L., Ji, H.F., Dong, X.D. et al. Highly Sensitive Electrochemical Bioassay for Hg(II) Detection Based on Plasma-Polymerized Propargylamine and Three-Dimensional Reduced Graphene Oxide Nanocomposite. Plasma Chem Plasma Process 36, 1051–1065 (2016). https://doi.org/10.1007/s11090-016-9707-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-016-9707-4

Keywords

Navigation