Skip to main content
Log in

A gold electrode modified with a three-dimensional graphene-DNA composite for sensitive voltammetric determination of dopamine

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe a three-dimensional (3D) structure composed of graphene and DNA for use in a voltammetric dopamine (DA) sensor. The material was deposited on a gold electrode, and the enhanced charge-transfer performance and deposition of DNA were confirmed by electrochemical analysis. Atomic force microscopy shows the graphene-DNA composite to have been assembled on the modified gold electrode. The modified gold electrode possesses excellent electrocatalytic activity for determination of DA, best at a working voltage of 0.1 V (vs. SCE). Ascorbic acid does not interfere. Response to DA is linear in the 0.1 to 100 μM concentration range, with a 30 nM detection limit even in the presence of 1.0 mM of ascorbic acid.

Schematic of a voltammetric dopamine sensor based on the use of a 3D structure composed of graphene and DNA. The sensor displays an enhanced charge-transfer rate, excellent electrocatalytic activity towards dopamine, and a 30 nM detection limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Xu T, Zhang Q, Zheng J, Lv Z, Wei J, Wang A, Feng J (2014) Simultaneous determination of dopamine and uric acid in the presence of ascorbic acid using Pt nanoparticles supported on reduced graphene oxide. Electrochim Acta 115:109–115

    Article  CAS  Google Scholar 

  2. Sanghavi B, Wolfbeis O, Hirsch T, Swami N (2015) Nanomaterial-based electrochemical sensing of neurological drugs and neurotransmitters. Microchim Acta 182:1–41

    Article  CAS  Google Scholar 

  3. Geim, A.K., Novoselov, K.S (2007) The rise of graphene. Nat Mater 6(3):183–191

  4. Khomyakov PA, Giovannetti G, Rusu PC, Brocks GV, Van den Brink J, Kelly PJ (2009)) First-principles study of the interaction and charge transfer between graphene and metals. Phys Rev B 79(19):195425

    Article  Google Scholar 

  5. Slinker, J. D., Muren, N.B., Renfrew E. S.; Barton, J. K (2011) DNA charge transport over 34 nm. Nat Chem 3:228–233

  6. Premkumar, T., Geckeler, K.E (2012) Graphene–DNA hybrid materials: assembly, applications, and prospects. Prog Polym Sci 37(4):515–529

  7. Lee, S.H., Kim, H.W., Hwang, J.O., Lee, W.J., Kwon, J., Bielawski, C.W., Ruoff, R.S., Kim, S.O (2010) Three-dimensional self-assembly of graphene oxide platelets into mechanically flexible Macroporous carbon films. Angew Chem 122(52): 10282–10286

  8. Xu Y, Wu Q, Sun Y, Bai H, Shi G (2010) Three-dimensional self-assembly of graphene oxide and DNA into multifunctional hydrogels. ACS Nano 4(12):7358–7362

    Article  CAS  Google Scholar 

  9. Sun X, Liu Z, Welsher K, Robinson JT, Goodwin A, Zaric S, Dai H (2008) Nano-graphene oxide for cellular imaging and drug delivery. Nano Res 1(3):203–212

    Article  CAS  Google Scholar 

  10. Liu X, Aizen R, Freeman R, Yehezkeli O, Willner I (2012) Multiplexed aptasensors and amplified DNA sensors using functionalized graphene oxide: application for logic gate operations. ACS Nano 6(4):3553–3563

    Article  CAS  Google Scholar 

  11. He Q, Wu S, Yin Z, Zhang H (2012) Graphene-based electronic sensors. Chem Sci 3(6):1764–1772

    Article  CAS  Google Scholar 

  12. Patil AJ, Vickery JL, Scott TB, Mann S (2009) Aqueous stabilization and self-assembly of graphene sheets into layered bio-nanocomposites using DNA. Adv Mater 21(31):3159–3164

    Article  CAS  Google Scholar 

  13. Subramanian P, Lesniewski A, Kaminska I, Vlandas A, Vasilescu A, Niedziolka-Jonsson J, Pichonat E, Happy H, Boukherroub R, Szunerits S (2013) Lysozyme detection on aptamer functionalized graphene-coated SPR interfaces. Biosens Bioelectron 50:239–243

    Article  CAS  Google Scholar 

  14. Sarma SD, Adam S, Hwang EH, Rossi E (2011) Electronic transport in two-dimensional graphene. Rev Mod Phys 83(2):407

    Article  Google Scholar 

  15. Chen D, Tang L, Li J (2010) Graphene-based materials in electrochemistry. Chem Soc Rev 39(8):3157–3180

    Article  CAS  Google Scholar 

  16. Kim Y, Bong S, Kang Y, Yang Y, Mahajan RK, Kim JS, Kim H (2010) Electrochemical detection of dopamine in the presence of ascorbic acid using graphene modified electrodes. Biosens Bioelectron 25(10):2366–2369

    Article  CAS  Google Scholar 

  17. Sheng Z, Zheng X, Xu J, Bao W, Wang F, Xia X (2012) Electrochemical sensor based on nitrogen doped graphene: simultaneous determination of ascorbic acid, dopamine and uric acid. Biosens Bioelectron 34(1):125–131

    Article  CAS  Google Scholar 

  18. Wang Y, Li Y, Tang L, Lu J, Li J (2009) Application of graphene-modified electrode for selective detection of dopamine. Electrochem Commun 11(4):889–892

    Article  CAS  Google Scholar 

  19. Wu L, Feng L, Ren J, Qu X (2012) Electrochemical detection of dopamine using porphyrin-functionalized graphene. Biosens Bioelectron 34(1):57–62

    Article  Google Scholar 

  20. Caballero-Diaz, E., Benitez-Martinez, S., Valcarcel, M., Rapid and simple nanosensor by combination of graphene quantum dots and enzymatic inhibition mechanisms, Sens Actuators B Chem, 2017, 240, 90–99

  21. Lin XQ, Lu LP, Jiang XH (2003) Voltammetric behavior of dopamine at ct-DNA modified carbon fiber microelectrode. Microchim Acta 143:229–235

    Article  CAS  Google Scholar 

  22. Lu LP, Wang SQ, Lin XQ (2004) Fabrication of layer-by-layer deposited multilayer films containing DNA and gold nanoparticle for norepinephrine biosensor. Anal Chim Acta 519:161–166

    Article  CAS  Google Scholar 

  23. Furst, A.L., Hill, M.G., Barton, J.K (2013) DNA-modified electrodes fabricated using copper-free click chemistry for enhanced protein detection. Langmuir 29(52): 16141–16149

  24. Lu LP, Xu LH, Kang TF, Cheng SY (2012) Investigation of DNA damage treated with perfluorooctane sulfonate (PFOS) on ZrO2/DDAB active nano-order film. Biosens Biolectron 35:180–185

    Article  CAS  Google Scholar 

  25. Xie R, Wang Z, Zhou W, Liu Y, Fan L, Li Y, Li X (2016) Graphene quantum dots as smart probes for biosensing. Anal Methods 8:4001–4016

    Article  CAS  Google Scholar 

  26. Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem Interfacial Electrochem 101(1):19–28

    Article  CAS  Google Scholar 

  27. Song Y, Wan L, Wang Y, Zhao S, Hou H, Wang L (2012) Electron transfer and electrocatalytics of cytochrome c and horseradish peroxidase on DNA modified electrode. Bioelectrochemistry 85:29–35

    Article  CAS  Google Scholar 

  28. sPheeney, C.G., Barton, J.K (2013) Intraduplex DNA-mediated electrochemistry of covalently tethered redox-active reporters. J Am Chem Soc 135(40): 14944–14947

  29. Pattnaik S, Swain K, Lin ZQ (2016) Graphene and graphene-based nanocomposites: biomedical applications and biosafety. J Mater Chem B 4:7813–7831

    Article  CAS  Google Scholar 

  30. Liu S, Yan J, He G, Zhong D, Chen J, Shi L, Zhou X, Jiang H (2012) Layer-by-layer assembled multilayer films of reduced graphene oxide/gold nanoparticles for the electrochemical detection of dopamine. J Electroanal Chem 672:40–44

    Article  CAS  Google Scholar 

  31. Wang H, Ren F, Yue R, Wang C, Zhai C, Du Y (2014) Macroporous flower-like graphene-nanosheet clusters used for electrochemical determination of dopamine. Colloids Surf A Physicochem Eng Asp 448:181–185

    Article  CAS  Google Scholar 

  32. Feng X, Zhang Y, Zhou J, Li Y, Chen S, Zhang L, Ma Y, Wang L, Yan X (2015) Three-dimensional nitrogen-doped graphene as an ultrasensitive electrochemical sensor for the detection of dopamine. Nanoscale 7(6):2427–2432

    Article  CAS  Google Scholar 

  33. Han HS, Ahmed MS, Jeong H, Jeon S (2015) The determination of dopamine in presence of serotonin on dopamine-functionalized electrochemically prepared graphene biosensor. J Electrochem Soc 162(4):B75–B82

    Article  CAS  Google Scholar 

  34. Sun J, Li L, Zhang X, Liu D, Lv S, Zhu D, Wu T, You T (2015) Simultaneous determination of ascorbic acid, dopamine and uric acid at a nitrogen-doped carbon nanofiber modified electrode. RSC Adv 5(16):11925–11932

    Article  CAS  Google Scholar 

  35. Wang Y, Zhang Y, Hou C, Liu M (2016) Ultrasensitive electrochemical sensing of dopamine using reduced graphene oxide sheets decorated with p-toluenesulfonate-doped polypyrrole/Fe3O4 nanospheres. Microchim Acta 183(3):1145–1152

    Article  CAS  Google Scholar 

  36. Mani V, Govindasamy M, Chen SM, Karthik R, Huang ST (2016) Determination of dopamine using a glassy carbon electrode modified with a graphene and carbon nanotube hybrid decorated with molybdenum disulfide flowers. Microchim Acta 183:2267–2275

    Article  CAS  Google Scholar 

  37. Rao D, Zhang X, Sheng Q, Zheng J (2016) Highly improved sensing of dopamine by using glassy carbon electrode modified with MnO2, graphene oxide, carbon nanotubes and gold nanoparticles. Microchim Acta 183(9):2597–2604

    Article  CAS  Google Scholar 

  38. Liu R, Zeng X, Liu J, Luo J, Zheng Y, Liu X (2016) A glassy carbon electrode modified with an amphiphilic, electroactive and photosensitive polymer and with multi-walled carbon nanotubes for simultaneous determination of dopamine and paracetamol. Microchim Acta 183:1543–1551

    Article  CAS  Google Scholar 

  39. Zhang ZL, Feng JX, Wang AJ, Wei J, Lv ZY, Feng JJ (2015) A glassy carbon electrode modified with porous gold nanosheets for simultaneous determination of dopamine and acetaminophen. Microchim Acta 182:589–595

    Article  CAS  Google Scholar 

  40. Xu Y, Hun X, Liu F, Wen X, Luo X (2015) Aptamer biosensor for dopamine based on a gold electrode modified with carbon nanoparticles and thionine labeled gold nanoparticles as probe. Microchim Acta 182:1797–1802

    Article  CAS  Google Scholar 

  41. Hammami A, Sahli R, Raouafi N (2016) Indirect amperometric sensing of dopamine using a redox-switchable naphthoquinone-terminated self-assembled monolayer on gold electrode. Microchim Acta 183:1137–1144

    Article  CAS  Google Scholar 

  42. Kumar MK, Prataap RV, Mohan S, Jha SK (2016) Preparation of electro-reduced graphene oxide supported walnut shape nickel nanostructures, and their application to selective detection of dopamine. Microchim Acta 183(5):1759–1768

    Article  CAS  Google Scholar 

  43. Qian T, Wu SS, Shen J (2013) Facilely prepared polypyrrole-reduced graphite oxide core-shell microspheres with high dispersibility for electrochemical detection of dopamine. Chem Commun 49:4610–4612

    Article  CAS  Google Scholar 

  44. Zhu WC, Chen T, Ma XM, Ma HY, Chen SH (2013) Highly sensitive and selective detection of dopamine based on hollow gold nanoparticles-graphene nanocomposite modified electrode. Colloids Surf B: Biointerfaces 111:321–326

    Article  CAS  Google Scholar 

  45. Yang L, Liu D, Huang J et al (2014) Simultaneous determination of dopamine, ascorbic acid and uric acid at electrochemically reduced graphene oxide modified electrode. Sensors Actuators B Chem 193:166–172

    Article  CAS  Google Scholar 

  46. Palanisamy S, Ku S, Chen SM (2013) Dopamine sensor based on a glassy carbon electrode modified with a reduced graphene oxide and palladium nanoparticles composite. Microchim Acta 180:1037–1042

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 21475006, 21375005, 21527808).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liping Lu.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 2593 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, L., Guo, L., Kang, T. et al. A gold electrode modified with a three-dimensional graphene-DNA composite for sensitive voltammetric determination of dopamine. Microchim Acta 184, 2949–2957 (2017). https://doi.org/10.1007/s00604-017-2267-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2267-3

Keywords

Navigation