Skip to main content
Log in

Au nanoparticle–decorated ZnO nanorods as fluorescent non-enzymatic glucose probe

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

ZnO nanorods (NRs) synthesized by a hydrothermal method and decorated with Au nanoparticles (NPs) were used for fluorescent non-enzymatic glucose detection. The detection is based on the photoluminescence (PL) quenching of ZnO NRs/Au NPs (at 382 nm under 325 nm excitation) exposed to glucose. The sensor exhibits a high sensitivity of (22 ± 2) % mM−1 (defined as percentage change of the PL peak intensity per mM) and a limit of detection (LOD) as low as 0.01 mM, along with an excellent selectivity and a short response time (less than 5 s). In comparison with a fluorescent non-enzymatic ZnO nanostructure–based glucose sensor, the addition of Au NPs significantly enhances the sensitivity. This is attributed to the surface plasmon resonance, which increases not only the photoluminescence intensity but also the photo-oxidation property of the ZnO NRs. Thus, ZnO NRs/Au NPs can act as an efficient photocatalyst for glucose detection. Most importantly, the probe is applicable to glucose detection in human blood serum. The outstanding performance of the material and its cost-effectiveness allow for potential application in single-use, noninvasive glucose devices.

Graphical abstract

A sensitive non-enzymatic fluorescent glucose probe–based ZnO nanorod decorated with Au nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Strakosas X, Selberg J, Pansodtee P, Yonas N, Manapongpun P, Teodorescu M, Rolandi M (2019) A non-enzymatic glucose sensor enabled by bioelectronic pH control. Sci Rep 9:1–7. https://doi.org/10.1038/s41598-019-46302-9

    Article  CAS  Google Scholar 

  2. Bruen D, Delaney C, Florea L, Diamond D (2017) Glucose sensing for diabetes monitoring: recent developments. Sensors 17:1866. https://doi.org/10.3390/s17081866

    Article  CAS  Google Scholar 

  3. Zhang R, Yin P-G, Wang N, Guo L (2009) Photoluminescence and Raman scattering of ZnO nanorods. Solid State Sci 11:865–869. https://doi.org/10.1016/j.solidstatesciences.2008.10.016

    Article  CAS  Google Scholar 

  4. Hu M, Zhang X, Meng X (2009) Photoluminescence of ZnO nanorods grown by hydrothermal method on Si substrate. Wuhan Univ J Nat Sci 14:415–418. https://doi.org/10.1007/s11859-009-0509-x

    Article  CAS  Google Scholar 

  5. Cheng H-M, Hsu TY-K et al (2005) Raman scattering and efficient UV photoluminescence from well-aligned ZnO nanowires epitaxially grown on GaN buffer layer. J Phys Chem B 109:8749–8754. https://doi.org/10.1021/jp0442908

    Article  CAS  PubMed  Google Scholar 

  6. Scarpellini D, Paoloni S, Medaglia PG, Pizzoferrato R, Orsini A, Falconi C (2015) Structural and optical properties of dense vertically aligned ZnO nanorods grown onto silver and gold thin films by galvanic effect with iron contamination. Mater Res Bull 65:231–237. https://doi.org/10.1016/j.materresbull.2015.01.059

    Article  CAS  Google Scholar 

  7. Oliva J, Diaz-Torres L, Torres-Castro A, Salas P, Perez-Mayen L, de la Rosa E (2015) Effect of TEA on the blue emission of ZnO quantum dots with high quantum yield. Opt Mater Express 5:1109. https://doi.org/10.1364/ome.5.001109

    Article  Google Scholar 

  8. Yue Q, Cheng J, Li G, Zhang K, Zhai Y, Wang L, Liu J (2011) Fluorescence property of ZnO nanoparticles and the interaction with bromothymol blue. J Fluoresc 21:1131–1135. https://doi.org/10.1007/s10895-010-0789-8

    Article  CAS  PubMed  Google Scholar 

  9. Solanki PR, Kaushik A, Ansari AA, Malhotra BD (2009) Nanostructured zinc oxide platform for cholesterol sensor. Appl Phys Lett 94:143901. https://doi.org/10.1063/1.3111429

    Article  CAS  Google Scholar 

  10. Bustos-Torres KA, Vazquez-Rodriguez S, la Cruz AM, Sepulveda-Guzman S, Benavides R, Lopez-Gonzalez R, Torres-Martínez LM (2017) Influence of the morphology of ZnO nanomaterials on photooxidation of polypropylene/ZnO composites. Mater Sci Semicond Process 68:217–225. https://doi.org/10.1016/j.mssp.2017.06.023

    Article  CAS  Google Scholar 

  11. Zhao H, Li RKY (2006) A study on the photo-degradation of zinc oxide (ZnO) filled polypropylene nanocomposites. Polymer (Guildf) 47:3207–3217. https://doi.org/10.1016/j.polymer.2006.02.089

    Article  CAS  Google Scholar 

  12. Kim KE, Kim TG, Sung YM (2012) Enzyme-conjugated ZnO nanocrystals for collisional quenching-based glucose sensing. CrystEngComm 14:2859–2865. https://doi.org/10.1039/c2ce06410c

    Article  CAS  Google Scholar 

  13. Sodzel D, Khranovskyy V, Beni V, Turner APF, Viter R, Eriksson MO, Holtz PO, Janot JM, Bechelany M, Balme S, Smyntyna V, Kolesneva E, Dubovskaya L, Volotovski I, Ubelis A, Yakimova R (2015) Continuous sensing of hydrogen peroxide and glucose via quenching of the UV and visible luminescence of ZnO nanoparticles. Microchim Acta 182:1819–1826. https://doi.org/10.1007/s00604-015-1493-9

    Article  CAS  Google Scholar 

  14. Sarangi SN, Nozaki S, Sahu SN (2015) ZnO nanorod-based non-enzymatic optical glucose biosensor. J Biomed Nanotechnol 11:988–996. https://doi.org/10.1166/jbn.2015.2048

    Article  CAS  PubMed  Google Scholar 

  15. Mai HH, Pham VT, Nguyen VT, Sai CD, Hoang CH, Nguyen TB (2017) Non-enzymatic fluorescent biosensor for glucose sensing based on ZnO Nanorods. J Electron Mater 46:3714–3719. https://doi.org/10.1007/s11664-017-5300-8

    Article  CAS  Google Scholar 

  16. Mai HH, Tran DH, Janssens E (2019) Non-enzymatic fluorescent glucose sensor using vertically aligned ZnO nanotubes grown by a one-step, seedless hydrothermal method. Microchim Acta 186:1–11. https://doi.org/10.1007/s00604-019-3353-5

    Article  CAS  Google Scholar 

  17. Zhang P, Zhao X, Ji Y, Ouyang Z, Wen X, Li J, Su Z, Wei G (2015) Electrospinning graphene quantum dots into a nanofibrous membrane for dual-purpose fluorescent and electrochemical biosensors. J Mater Chem B 3:2487–2496. https://doi.org/10.1039/c4tb02092h

    Article  CAS  PubMed  Google Scholar 

  18. Pandey G, Chaudhari R, Joshi B, Choudhary S, Kaur J, Joshi A (2019) Fluorescent biocompatible platinum-porphyrin–doped polymeric hybrid particles for oxygen and glucose biosensing. Sci Rep 9:1–12. https://doi.org/10.1038/s41598-019-41326-7

    Article  CAS  Google Scholar 

  19. Talib AJ, Alkahtani M, Jiang L, Alghannam F, Brick R, Gomes CL, Scully MO, Sokolov AV, Hemmer PR (2018) Lanthanide ions doped in vanadium oxide for sensitive optical glucose detection. Opt Mater Express 8:3277. https://doi.org/10.1364/ome.8.003277

    Article  CAS  Google Scholar 

  20. Lin S-Y, Chang S-J, Hsueh T-J (2014) ZnO nanowires modified with Au nanoparticles for nonenzymatic amperometric sensing of glucose. Appl Phys Lett 104:193704. https://doi.org/10.1063/1.4875028

    Article  CAS  Google Scholar 

  21. Tian K, Alex S, Siegel G, Tiwari A (2015) Enzymatic glucose sensor based on Au nanoparticle and plant-like ZnO film modified electrode. Mater Sci Eng C 46:548–552. https://doi.org/10.1016/j.msec.2014.10.064

    Article  CAS  Google Scholar 

  22. Hsu C-L, Fang Y-J, Hsueh T-J, Wang SH, Chang SJ (2017) Nonenzymatic glucose sensor based on Au/ZnO core–shell nanostructures decorated with Au nanoparticles and enhanced with blue and green light. J Phys Chem B 121:2931–2941. https://doi.org/10.1021/acs.jpcb.6b11257

    Article  CAS  PubMed  Google Scholar 

  23. Doan QK, Nguyen MH, Sai CD, Pham VT, Mai HH, Pham NH, Bach TC, Nguyen VT, Nguyen TT, Ho KH, Tran TH (2020) Enhanced optical properties of ZnO nanorods decorated with gold nanoparticles for self cleaning surface enhanced Raman applications. Appl Surf Sci 505:144593. https://doi.org/10.1016/j.apsusc.2019.144593

    Article  CAS  Google Scholar 

  24. Barbillon G (2019) Fabrication and SERS performances of metal/Si and metal/ZnO nanosensors: a review. Coatings 9:1–14. https://doi.org/10.3390/COATINGS9020086

    Article  Google Scholar 

  25. Dixit T, Palani IA, Singh V (2018) Insights into non-noble metal based nanophotonics: exploration of Cr-coated ZnO nanorods for optoelectronic applications. RSC Adv 8:6820–6833. https://doi.org/10.1039/C7RA13174G

    Article  CAS  Google Scholar 

  26. Do TAT, Ho TG, Bui TH, Pham QN, Giang HT, Do TT, Nguyen DV, Tran DL (2018) Surface-plasmon-enhanced ultraviolet emission of Au-decorated ZnO structures for gas sensing and photocatalytic devices. Beilstein J Nanotechnol 9:771–779. https://doi.org/10.3762/bjnano.9.70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ren Q-H, Zhang Y, Lu H-L, Chen HY, Zhang Y, Li DH, Liu WJ, Ding SJ, Jiang AQ, Zhang DW (2016) Surface-plasmon mediated photoluminescence enhancement of Pt-coated {ZnO} nanowires by inserting an atomic-layer-deposited Al2O3spacer layer. Nanotechnology 27:165705. https://doi.org/10.1088/0957-4484/27/16/165705

    Article  CAS  PubMed  Google Scholar 

  28. Lin C-A, Tsai D-S, Chen C-Y, He J-H (2011) Significant enhancement of yellow–green light emission of ZnO nanorod arrays using Ag island films. Nanoscale 3:1195–1199. https://doi.org/10.1039/C0NR00732C

    Article  CAS  PubMed  Google Scholar 

  29. Park H-H, Zhang X, Lee KW, Sohn A, Kim DW, Kim J, Song JW, Choi YS, Lee HK, Jung SH, Lee IG, Cho YD, Shin HB, Sung HK, Park KH, Kang HK, Park WK, Park HH (2015) Selective photochemical synthesis of Ag nanoparticles on position-controlled ZnO nanorods for the enhancement of yellow-green light emission. Nanoscale 7:20717–20724. https://doi.org/10.1039/C5NR05877E

    Article  CAS  PubMed  Google Scholar 

  30. Nayak J, Sahu SN, Kasuya J, Nozaki S (2008) Effect of substrate on the structure and optical properties of ZnO nanorods. J Phys D Appl Phys 41:115303. https://doi.org/10.1088/0022-3727/41/11/115303

    Article  CAS  Google Scholar 

  31. Yi Z, Chen J, Luo J, Yi Y, Kang X, Ye X, Bi P, Gao X, Yi Y, Tang Y (2015) Surface-plasmon-enhanced band emission and enhanced photocatalytic activity of au nanoparticles-decorated zno nanorods. Plasmonics 10:1373–1380. https://doi.org/10.1007/s11468-015-9933-2

    Article  CAS  Google Scholar 

  32. Anderson DJ (1989) Determination of the lower limit of detection. Clin Chem 35:2152–2153

    Article  CAS  Google Scholar 

  33. Kireev SV, Shnyrev SL (2015) Study of molecular iodine, iodate ions, iodide ions, and triiodide ions solutions absorption in the UV and visible light spectral bands. Laser Phys 25:75602. https://doi.org/10.1088/1054-660X/25/7/075602

    Article  CAS  Google Scholar 

  34. Sakur AA, Affas S (2017) Validated spectrophotometric method to determine vardenafil and sildenafil in pharmaceutical forms using potassium iodide and potassium iodate. Int J Pharm Pharm Sci 9:65. https://doi.org/10.22159/ijpps.2017v9i11.20578

    Article  CAS  Google Scholar 

  35. Silva RLGNP, De Oliveira AF, Neves EA (1998) Spectrophotometric determination of iodate in table salt. J Braz Chem Soc 9:171–174. https://doi.org/10.1590/S0103-50531998000200009

    Article  CAS  Google Scholar 

  36. Manna J, Vinod TP, Flomin K, Jelinek R (2015) Photocatalytic hybrid au/ZnO nanoparticles assembled through a one-pot method. J Colloid Interface Sci 460:113–118. https://doi.org/10.1016/j.jcis.2015.08.053

    Article  CAS  PubMed  Google Scholar 

  37. Ruiz Peralta MDL, Pal U, Zeferino RS (2012) Photoluminescence (PL) quenching and enhanced photocatalytic activity of Au-decorated ZnO nanorods fabricated through microwave-assisted chemical synthesis. ACS Appl Mater Interfaces 4:4807–4816. https://doi.org/10.1021/am301155u

    Article  CAS  Google Scholar 

  38. Han Z, Wei L, Zhang Z, Zhang X, Pan H, Chen J (2013) Visible-light photocatalytic application of hierarchical Au-ZnO flower-rod heterostructures via surface plasmon resonance. Plasmonics 8:1193–1202. https://doi.org/10.1007/s11468-013-9531-0

    Article  CAS  Google Scholar 

  39. Sun L, Zhao D, Song Z, Shan C, Zhang Z, Li B, Shen D (2011) Gold nanoparticles modified ZnO nanorods with improved photocatalytic activity. J Colloid Interface Sci 363:175–181. https://doi.org/10.1016/j.jcis.2011.07.005

    Article  CAS  PubMed  Google Scholar 

  40. Yu H, Ming H, Gong J et al (2013) Facile synthesis of Au/ZnO nanoparticles and their enhanced photocatalytic activity for hydroxylation of benzene. Bull Mater Sci 36:367–372. https://doi.org/10.1007/s12034-013-0491-y

    Article  CAS  Google Scholar 

  41. Cheng M, Zhang Q, Yang C, Zhang B, Deng K (2019) Photocatalytic oxidation of glucose in water to value-added chemicals by zinc oxide-supported cobalt thioporphyrazine. Catal Sci Technol 9:6909–6919. https://doi.org/10.1039/C9CY01756A

    Article  CAS  Google Scholar 

  42. Fageria P, Gangopadhyay S, Pande S (2014) Synthesis of ZnO/Au and ZnO/Ag nanoparticles and their photocatalytic application using UV and visible light. RSC Adv 4:24962–24972. https://doi.org/10.1039/c4ra03158j

    Article  CAS  Google Scholar 

  43. Khalila SM, Ali-Shattleb EE, Alia NM (2013) A theoretical study of carbohydrates as corrosion inhibitors of iron. Zeitschrift fur Naturforsch - Sect A J Phys Sci 68:581–586. https://doi.org/10.5560/ZNA.2013-0037

    Article  CAS  Google Scholar 

  44. Ibrahim A, Elhaes H, Fanli Meng MI (2019) Effect of hydration on the physical properties of glucose. Biointerface Res Appl Chem 9:4114–4118. https://doi.org/10.33263/BRIAC94.114118

    Article  CAS  Google Scholar 

  45. Safavi A, Maleki N, Farjami E (2009) Fabrication of a glucose sensor based on a novel nanocomposite electrode. Biosens Bioelectron 24:1655–1660. https://doi.org/10.1016/j.bios.2008.08.040

    Article  CAS  PubMed  Google Scholar 

  46. Zhou C, Xu L, Song J, Xing R, Xu S, Liu D, Song H (2014) Ultrasensitive non-enzymatic glucose sensor based on three-dimensional network of ZnO-CuO hierarchical nanocomposites by electrospinning. Sci Rep 4:1–9. https://doi.org/10.1038/srep07382

    Article  CAS  Google Scholar 

  47. Wani TA, Bakheit AH, Abounassif MA, Zargar S (2018) Study of interactions of an anticancer drug neratinib with bovine serum albumin: spectroscopic and molecular docking approach. Front Chem 6:47. https://doi.org/10.3389/fchem.2018.00047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kornecki JF, Carballares D, Tardioli PW, Rodrigues RC, Berenguer-Murcia Á, Alcántara AR, Fernandez-Lafuente R (2020) Enzyme production of D-gluconic acid and glucose oxidase: successful tales of cascade reactions. Catal Sci Technol 10:5740–5771. https://doi.org/10.1039/d0cy00819b

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Assoc. Prof. Nguyen Viet Tuyen for Au nanoparticle decoration, MSc. Sai Cong Doanh for SEM and EDS mapping measurements, and Dr. Luu Manh Quynh for UV-VIS measurement.

Funding

This work was financially supported by the National Foundation for Science and Technology Development (NAFOSTED) of Vietnam through Grant No. 103.03-2019.315.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hanh Hong Mai or Ewald Janssens.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 368 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mai, H.H., Janssens, E. Au nanoparticle–decorated ZnO nanorods as fluorescent non-enzymatic glucose probe. Microchim Acta 187, 577 (2020). https://doi.org/10.1007/s00604-020-04563-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04563-6

Keywords

Navigation