Skip to main content
Log in

Gold nanoparticles for sensitive detection of hydrogen peroxide: a simple non-enzymatic approach

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A simple and novel strategy was developed to fabricate hydrogen peroxide (H2O2) sensor based on gold nanoparticles (NPs) stabilized in polyvinylpyrrolidone. The formation of polymer-stabilized gold NPs (PSGN) was confirmed by UV–Vis spectroscopy, X-ray diffraction analysis and high-resolution transmission electron microscopy. Fourier transform infrared spectroscopy is used to elucidate the interaction between the polymer and the gold NPs. The electrochemical activities of the PSGN-modified electrode were characterized by cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy. The electrochemical results show remarkable electrocatalytic activity of the PSGN-modified electrode towards H2O2 detection. The modified electrode exhibits a wide linear range with low detection limit of 0.7 µM. The fabricated sensor shows good reproducibility, long-term stability and high selectivity towards other electroactive species as well. Thus the proposed sensor seems to be a potential candidate for developing a simple, rapid and cost-effective enzymeless biosensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Rhee SG (2006) H2O2, a necessary evil for cell signalling. Science 312:1882–1883

    Article  Google Scholar 

  2. Li C, Hu J, Liu T, Liu S (2011) Stimuli-triggered off/on switchable complexation between a novel type of chare-generation polymer (CGP) and gold nanoparticles for the sensitive calorimetric detection of hydrogen peroxide and glucose. Macromolecules 44:429–431

    Article  CAS  Google Scholar 

  3. Zhao J, Yan Y, Zhu L, Li X, Li G (2013) An amperometric biosensor for the detection of hydrogen peroxide released from human breast cancer cells. Biosens Bioelectron 41:815–819

    Article  CAS  Google Scholar 

  4. Meng F, Yan X, Liu J, Gu J, Zho Z (2011) Nanoporous gold as non-enzymatic sensor for hydrogen peroxide. Electrochim Acta 56:4657–4662

    Article  CAS  Google Scholar 

  5. Zhang Y, Yuan R, Chai Y, Wang J, Zhong H (2011) Amperometric biosensor for nitrite and hydrogen peroxide based on hemoglobin immobilized on gold nanoparticles/polythionine/platinum nanoparticles modified glassy carbon electrode. J Chem Technol Biotechnol 87:570–574

    Article  Google Scholar 

  6. He W (2013) Y-.T. Zhou, W.G. Wamer, X. Hu, X. Wu, Z. Zheng, M.D. Boudreau, J.-J. Yin, Intrinsic catalytic activity of Au nanoparticles with respect to hydrogen peroxide decompostion and superoxide scavenging. Biomaterials 32:765–773

    Article  Google Scholar 

  7. Spivak MY, Bubnov RV, Yemets IM, Lazarenko LM, Tymoshok NO, Ulberg ZR (2013) Gold nanoparticles—the theranostic challenge for PPPM: nanocardiology application. EPMA J 4:18

    Article  Google Scholar 

  8. Khlebtsov N, Dykman L (2011) Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem Soc Rev 40:1647–1671

    Article  CAS  Google Scholar 

  9. Cao H, Sun X, Zhang Y, Jia N (2012) Electrochemical sensing based on gold nanoparticle-decorated halloysite nanotube composites. Anal Biochem 430:111–115

    Article  CAS  Google Scholar 

  10. Sadrolhosseini AR, Noor ASBM, Shameli K, Mamdoohi G, Moksin MM, Mahdi MA (2013) Laser ablation synthesis and optical properties of copper nanoparticles. J Mater Res 28:2629–2636

    Article  CAS  Google Scholar 

  11. Wender H, Andreazza ML, Correia RRB, Teixeira SR, Dupont J (2011) Synthesis of gold nanoparticles by laser ablation of an Au foil inside and outside ionic liquids. Nanoscale 3:1240–1245

    Article  CAS  Google Scholar 

  12. Okitsu K, Ashokkumar M, Grieser F (2005) Sonochemical synthesis of gold nanoparticles: effects of ultrasound frequency. J Phys Chem B 109:20673–20675

    Article  CAS  Google Scholar 

  13. Mehta SK, Gupta S (2011) Time-efficient microwave synthesis of Pd nanoparticles and their electrocatalytic property in oxidation of formic acid and alcohols in alkaline media. J Appl Electrochem 41:1407–1417

    Article  CAS  Google Scholar 

  14. Seol SK, Kim D, Jung S, Chang WS, Bae YM, Lee KH, Hwu Y (2012) Effect of citrate on poly(vinylpyrrolidone)—stabilized gold nanoparticles formed by PVP reduction in microwave synthesis. Mater Chem Phys 137:135–139

    Article  CAS  Google Scholar 

  15. Yu P, Qian Q, Wang X, Cheng H, Ohsaka T, Mao L (2010) Potential-controllable green synthesis and deposition of metal nanoparticles with electrochemical method. J Mater Chem 20:5820–5822

    Article  CAS  Google Scholar 

  16. Liu R, Li S, Yu X, Zhang G, Zhang S, Yao J, Keita B, Nadjo L, Zhi L (2012) Facile synthesis of Au-nanoparticle/polyoxometalate/graphene tricomponent nanohybrides: an enzyme free electrochemical biosensor for hydrogen peroixe. Small 8(9):1398–1406

    Article  CAS  Google Scholar 

  17. Sedeno PY, Pingarron JM (2005) Gold nanoparticles-based electrochemical biosensors. Anal Bioanal Chem 382:884–886

    Article  Google Scholar 

  18. Du S, Kendall K, Toloueinia P, Mehrabadi Y, Gupta G, Newton J (2012) Aggregation and adhesion of gold nanoparticles in phosphate buffered saline. J Nanopart Res 14:758

    Article  Google Scholar 

  19. Chen M, Xing Y (2005) Polymer-mediated synthesis of highly dispersed Pt nanoparticles on carbon black. Langmuir 21(20):9334–9338

    Article  CAS  Google Scholar 

  20. Misra N, Biswal J, Gupta A, Sainis JK, Sabharwal S (2012) Gamma irradiation induced synthesis of gold nanoparticles in aqueous polyvinyl pyrrolidone solution and its application for hydrogen peroxide estimation. Radiat Phys Chem Oxf Engl 1993(81):195–200

    Article  Google Scholar 

  21. Zhang J, Liu H, Wang Z, Ming N, Li Z, Biris AS (2007) Polyvinylpyrrolidone-directed crystallization of ZnO with tunable morphology and band gap. Adv Funct Mater 17(18):3897–3905

    Article  CAS  Google Scholar 

  22. Zhang J, Oyama M (2005) Gold nanoparticle-attached ITO as a biocompatible matrix for myoglobin immobilzation: direct electrochemistry and catalysis to hydrogen peroxide. J Electroanal Chem (Lausanne Switz) 577:273–279

    Article  CAS  Google Scholar 

  23. Zhang J, Oyama M (2004) A hydrogen peroxide sensor based on the peroxidase activity of hemoglobin immobilized on gold nanoparticles-modified ITO electrode. Electrochim Acta 50:85–90

    Article  CAS  Google Scholar 

  24. Xie L, Xu Y, Cao X (2013) Hydrogen peroxide biosensor based on hemoglobin immobilized at graphene, flower-like zinc oxide, and gold nanoparticles nanocomposite modified glassy carbon electrode. Colloids Surf B Biointerfaces 107:245–250

    Article  CAS  Google Scholar 

  25. Xu S, Tu G, Peng B, Han X (2006) Self-assembling gold nanoparticles on thiol-functionalized poly(styrene-co-acrylic acid) nanospheres for fabrication of a mediatorless biosensor. Anal Chim Acta 570:151–157

    Article  CAS  Google Scholar 

  26. Villalonga R, Diez P, Sedeno PY, Pingarron JM (2011) Wiring horseradish peroxidase on gold nanoparticles-based nanostructured polymeric network for the construction of mediatorless hydrogen peroxde biosensor. Electrochim Acta 56:4672–4677

    Article  CAS  Google Scholar 

  27. Wang L, Wang E (2004) A novel hydrogen peroxide sensor based on horseradish peroxidase immobilized on colloidal Au modified ITO electrode. Electrochem Commun 6:225–229

    Article  CAS  Google Scholar 

  28. Jia J, Wang B, Wu A, Cheng G, Li Z, Dong S (2002) A method to construct a third-generation horseradish peroxidase biosensor: self-assembling gold nanoparticles to three-dimensional sol-gel network. Anal Chem 74:2217–2223

    Article  CAS  Google Scholar 

  29. Li Y, Lu Q, Wu S, Wang L, Shi X (2013) Hydrogen peroxide sensing using ultrathin platinum-coated gold nanoparticles with core@shell structure. Biosens Bioelectron 41:576–581

    Article  CAS  Google Scholar 

  30. Zhou L, Kuai L, Li W, Geng B (2012) Ion-exchange route to Au–Cu x OS yolk-shell nanostructures with porous shells and their ultarsensitive H2O2 detection. ACS Appl Mater Interfaces 4:6463–6467

    Article  CAS  Google Scholar 

  31. Park Y, Kim J (2010) Electrocatalytic reduction of hydrogen peroxide at nanoporous gold surfaces. J Korean Electrochem Soc 13:251–255

    Article  CAS  Google Scholar 

  32. Hamer M, Carballo RR, Rezzano IN (2009) Electrocatalytic reduciton of hydrogen peroxide by nanostructured bimetallic films of metalloporphyrins. Electroanalysis 21:2133–2138

    Article  CAS  Google Scholar 

  33. Fang Y, Guo S, Zhu C, Zhai Y, Wang E (2010) Self-assembly of cationic polyelectrolyte-functionalized graphene nanosheets and gold nanoparticles: a two-dimensional heterostructure for hydrogen peroxide sensing. Langmuir 26:11277–11282

    Article  CAS  Google Scholar 

  34. Luong NH, Long NN, Vu LV, Hai NH, Quynh LM, Nghia PT, Anh NTV (2009) Synthesis and characterization of metallic nanoparticles. VNU J Sci Math 25:221–230

    Google Scholar 

  35. Aryal S, Remant BKC, Dharmaraj N, Bhattarai N, Kim CH, Kim HY (2006) Spectroscopic identification of S-Au interaction in cysteine capped gold nanoparticles. Spectrochim Acta A 63:160–163

    Article  Google Scholar 

  36. Amendola V, Meneghetti M (2009) Size evaluation of gold nanoparticles by UV–Vis spectroscopy. J Phys Chem C 113(11):4277–4285

    Article  CAS  Google Scholar 

  37. Kim Y, Johnson RC, Hupp JT (2001) Gold nanoparticle-based sensing of “spectroscopically silent” heavy metal ions. Nano Lett 1(4):165–167

    Article  Google Scholar 

  38. Link S, El-Sayed MA (1999) Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J Phys Chem B 103:4212–4217

    Article  CAS  Google Scholar 

  39. Yu HLL, Montesa CM, Rojas NRL, Enriquez EP (2012) Nucleic-acid based lateral flow strip biosensor via competitive binding for possible dengue detection. J Biosens Bioelectron 3(5):128 (ISSN 2155-6210)

    Google Scholar 

  40. Liu J, Lu Y (2006) Preparation of aptamer-linked gold nanoparticle purple aggregates for colorimetric sensing of analytes. Nat Protoc 1(1):246–252

    Article  CAS  Google Scholar 

  41. Basu S, Panigrahi S, Praharaj S, Ghosh SK, Pande S, Jana S, Pal T (2006) Dipole–dipole plasmon interactions in self-assembly of gold organosol induced by glutathione. New J Chem 30:1333–1339

    Article  CAS  Google Scholar 

  42. Nalawade P, Mukherjee T, Kapoor S (2013) Green synthesis of gold nanoparticles using glycerol as a reducing agent. Advances in Nanoparticles 2:78–86

    Article  Google Scholar 

  43. Corbierre MK, Cameron NS, Sutton M, Mochrie SGJ, Lurio LB, Ruhm A, Lennox RB (2001) Polymer-stabilized gold nanoparticles and their incorporation into polymer matrices. J Am Chem Soc 123:10411–10412

    Article  CAS  Google Scholar 

  44. Singh S, Jain DVS, Singla ML (2013) Sol–gel based composite of gold nanoparticles as matix for tyrosinase for amperometric catechol biosensor. Sens Actuators B Chem 182:161–169

    Article  CAS  Google Scholar 

  45. Zhang FX, Han L, Israel LB, Daras JG, Maye MM, Ly NK, Zhong C-J (2002) Colorimetric detection of thiol-containing amino acids using gold nanoparticles. Analyst 127:462–465

    Article  CAS  Google Scholar 

  46. Hu M, Chen J, Li Z-Y, Au L, Hartland GV, Li X, Marquez M, Xia Y (2006) Gold nanostrutures: engineering their plasmonic properties for biomedical applications. Chem Soc Rev 35:1084–1094

    Article  CAS  Google Scholar 

  47. Jeong GH, Lee YW, Kim M, Han SW (2009) High-yield synthesis of multi-branched gold nanoparticles and their surface-enhanced Raman scattering properties. J Colloid Interface Sci 329:97–102

    Article  CAS  Google Scholar 

  48. Nemamcha A, Rehspringer J-L, Khatmi D (2006) Synthesis of palladium nanoparticles by sonochemical reduction of palladium (II) nitrate in aqueous solution. J Phys Chem B 110:383–387

    Article  CAS  Google Scholar 

  49. Behera M, Ram S (2014) Inquiring the mechanism of formation, encapsulation, and stabilization of gold nanoparticles by poly (vinyl pyrrolidone) molecules in 1-butanol. Appl Nanosci 4(2):247–254

    Article  CAS  Google Scholar 

  50. Xian J, Hua Q, Jiang Z, Ma Y, Huang W (2012) Size-dependent interaction of the poly(N-vinyl-2-pyrrolidone) capping ligand with Pd nanocrystals. Langmuir 28:6736–6741

    Article  CAS  Google Scholar 

  51. Debnath D, Kim SH, Geckeler KE (2009) The first solid-phase route to fabricate and size-tune gold nanoparticles at room temperature. J Mater Chem 19:8810–8816

    Article  CAS  Google Scholar 

  52. Liu H, Hou P, Zhang W, Wu J (2010) Synthesis of monosized core–shell Fe3O4/Au multifunctional nanoparticles by PVP-assisted nanoemulsion process. Colloids Surf A Physicochem Eng Aspects 356:21–27

    Article  CAS  Google Scholar 

  53. Lu X, Li L, Zhang W, Wang C (2005) Preparation and characterization of Ag2S nanoparticles embedded in polymer fibre matrices by electrospinning. Nanotechnology 16:2233–2237

    Article  CAS  Google Scholar 

  54. Jian-Shi D, Qing-biao Y, Jei B, Shu-gang W, Chao-qun Z, Yao-xian L (2007) Synthesis of poly (N-vinyl pyrrolidone) nanofibers containing gold nanoparticles via electrospinning technique. Chem Res Chin Univ 23(5):538–540

    Article  Google Scholar 

  55. Behera M, Ram S (2013) Spectroscopy-based study on the interaction between gold nanoparticle and poly (vinyl pyrrolidone) molecules in a non-hydrocolloid. Int Nano Lett 3:17

    Article  Google Scholar 

  56. Deniz AE, Vural HA, Ortaç B, Uyar T (2011) Gold nanoparticle/polymer nanofibrous composites by laser ablation and electrospinning. Mater Lett 65:2941–2943

    Article  CAS  Google Scholar 

  57. Zhang Z, Zhao B, Hu L (1996) PVP protective Mechanism of ultrafine silver powder synthesized by chemical reduction processes. J Solid State Chem 121:105–110

    Article  CAS  Google Scholar 

  58. Khanna PK, Gokhale R, Subbarao VVVS (2004) Poly (vinyl pyrolidone) coated silver nano powder via displacement reaction. J Mater Sci Lett 39:3773–3776

    Article  CAS  Google Scholar 

  59. Dong G, Xiao X, Liu X, Qian B, Ma Z, Ye S, Chen D, Qiu J (2010) Preparation and characterization of Ag nanoparticle embedded polymer electrospun nanofibers. J Nanopart Res 12:1319–1329

    Article  CAS  Google Scholar 

  60. Raoof JB, Ojani R, Hasheminejad E, Nadimi SR (2012) Electrochemical synthesis of Ag nanoparticles supported on glassy carbon electrode by means of p-isopropyl calix [6] arene matrix and its applications for electrocatalytic reduction of H2O2. Appl Surf Sci 258:2788–2795

    Article  CAS  Google Scholar 

  61. Zhang L, Jiang X, Wang E, Dong S (2005) Attachment of gold nanoparticles to glassy carbon electrode and its application for the direct electrochemistry and electrocatalytic behavior of hemoglobin. Biosens Bioelectron 21:337–345

    Article  CAS  Google Scholar 

  62. Bharathi S, Nogami M, Ikeda S (2001) Novel electrochemical interfaces with a tunable kinetic barrier by self-assembling organically modified silica gel and gold nanoparticles. Langmuir 17(1):1–4

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Muralidharan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sophia, J., Muralidharan, G. Gold nanoparticles for sensitive detection of hydrogen peroxide: a simple non-enzymatic approach. J Appl Electrochem 45, 963–971 (2015). https://doi.org/10.1007/s10800-015-0862-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-015-0862-8

Keywords

Navigation