Skip to main content
Log in

Colorimetric and bare eye determination of urinary methylamphetamine based on the use of aptamers and the salt-induced aggregation of unmodified gold nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

An Erratum to this article was published on 05 November 2014

Abstract

Methamphetamine (METH) is second only to marijuana as a widely used illicit drug. We are presenting a simple colorimetric assay for sensitive and visual detection of METH in human urine using a METH-specific aptamer as the recognition element and unmodified gold nanoparticles as indicators. The method is based on the finding that the presence of METH results in AuNPs solution’s color change from red to blue. Normally, aptamers attach to the surface of AuNPs and thereby increasing their resistance to NaCl-induced aggregation. If, however, the aptamer bind to METH via G-quartets, rapid salt induced aggregation occurs associated with the formation of a blue colored solution. Urinary METH can be quantified via this effect either visually or by measurement of the absorbance ratios at 660 and 525 nm, respectively. It works in the 2 μM to 10 μM concentration range with a detection limit at 0.82 μM. The method is fast and also works well in human urine. It is believed to represent a widely applicable aptamer-based detection scheme.

We present a simple colorimetric assay for ultrasensitive and highly specific detection of Methamphetamine (METH) in human urine using a METH-aptamer as the recognition element and unmodified gold nanoparticles (AuNPs) as indicators. It works in the 2 μM to 10 μM concentration range with a detection limit at 0.82 μM

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rothman RB, Baumann MH, Dersch CM, Romero DV, Rice KC, Carroll FI, Partilla JS (2001) Amphetamine-type central nervous system stimulants release norepinephrine more potently than they release dopamine and serotonin. Synapse 39(1):32–41

    Article  CAS  Google Scholar 

  2. Stephans SE, Whittingham TS, Douglas AJ, Lust WD, Yamamoto BK (1998) Substrates of Energy Metabolism Attenuate Methamphetamine‐Induced Neurotoxicity in Striatum. J Neurochem 71(2):613–621

    Article  CAS  Google Scholar 

  3. Takayama N, Iio R, Tanaka S, Chinaka S, Hayakawa K (2003) Analysis of methamphetamine and its metabolites in hair. Biomed Chromatogr 17(2–3):74–82

    Article  CAS  Google Scholar 

  4. Kraemer T, Paul LD (2007) Bioanalytical procedures for determination of drugs of abuse in blood. Anal Bioanal Chem 388(7):1415–1435

    Article  CAS  Google Scholar 

  5. Boles TH, Wells MJ (2010) Analysis of amphetamine and methamphetamine as emerging pollutants in wastewater and wastewater-impacted streams. J Chromatogr A 1217(16):2561–2568

    Article  CAS  Google Scholar 

  6. Yi CQ, Tao Y, Wang B, Chen X (2005) Electrochemiluminescent determination of methamphetamine based on tris (2, 2’-bipyridine) ruthenium (II) ion-association in organically modified silicate films. Anal Chim Acta 541(1):73–81

    Article  Google Scholar 

  7. Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105(4):1547–1562

    Article  CAS  Google Scholar 

  8. Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277(5329):1078–1081

    Article  CAS  Google Scholar 

  9. Shi YP, Pan Y, Zhang H, Zhang ZM, Li M-J, Yi CQ, Yang MS (2014) A dual-mode nanosensor based on carbon quantum dots and gold nanoparticles for discriminative detection of glutathione in human plasma. Biosensors and Bioelectronics

  10. Hermann T, Patel DJ (2000) Adaptive recognition by nucleic acid aptamers. Science 287(5454):820–825

    Article  CAS  Google Scholar 

  11. Liu J, Lu Y (2004) Adenosine-dependent assembly of aptazyme-functionalized gold nanoparticles and its application as a colorimetric biosensor. Anal Chem 76(6):1627–1632

    Article  CAS  Google Scholar 

  12. Liu H, Xiang Y, Lu Y, Crooks RM (2012) Aptamer‐based origami paper analytical device for electrochemical detection of adenosine. Angew Chem 124(28):7031–7034

    Article  Google Scholar 

  13. Wei H, Li B, Li J, Wang E, Dong S (2007) Simple and sensitive aptamer-based colorimetric sensing of protein using unmodified gold nanoparticle probes. Chem Commun 36:3735–3737

    Article  Google Scholar 

  14. Jeffrey C (2007) Simple and rapid colorimetric enzyme sensing assays using non-crosslinking gold nanoparticle aggregation. Chem Commun 36:3729–3731

    Google Scholar 

  15. Wang J, Wang L, Liu X, Liang Z, Song S, Li W, Li G, Fan C (2007) A Gold Nanoparticle‐Based Aptamer Target Binding Readout for ATP Assay. Adv Mater 19(22):3943–3946

    Article  CAS  Google Scholar 

  16. Medley CD, Smith JE, Tang Z, Wu Y, Bamrungsap S, Tan W (2008) Gold nanoparticle-based colorimetric assay for the direct detection of cancerous cells. Anal Chem 80(4):1067–1072

    Article  CAS  Google Scholar 

  17. Wang L, Liu X, Hu X, Song S, Fan C (2006) Unmodified gold nanoparticles as a colorimetric probe for potassium DNA aptamers. Chem Commun 36:3780–3782

    Article  Google Scholar 

  18. Chen A, Jiang X, Zhang W, Chen G, Zhao Y, Tunio TM, Liu J, Lv Z, Li C, Yang S (2013) High sensitive rapid visual detection of sulfadimethoxine by label-freeaptasensor. Biosens Bioelectron 42:419–425

    Article  CAS  Google Scholar 

  19. Liu P, Yang X, Sun S, Wang Q, Wang K, Huang J, Liu J, He L (2013) Enzyme-free colorimetric detection of DNA by using gold nanoparticles and hybridization chain reaction amplification. Anal Chem 85(16):7689–7695

    Article  CAS  Google Scholar 

  20. Ebrahimi M, Johari-Ahar M, Hamzeiy H, Barar J, Mashinchian O, Omidi Y (2012) Electrochemical impedance spectroscopic sensing of methamphetamine by a specific aptamer. BioImpacts: BI 2(2):91

    CAS  Google Scholar 

  21. Li H, Rothberg L (2004) Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc Natl Acad Sci U S A 101(39):14036–14039

    Article  CAS  Google Scholar 

  22. Shi Y, Zhang H, Yue Z, Zhang Z, Teng K-S, Li M-J, Yi C, Yang M (2013) Coupling gold nanoparticles to silica nanoparticles through disulfide bonds for glutathione detection. Nanotechnology 24(37):375501

    Article  Google Scholar 

  23. Shi Y, Yi C, Zhang Z, Zhang H, Li M, Yang M, Jiang Q (2013) Peptide-Bridged Assembly of Hybrid Nanomaterial and Its Application for Caspase-3 Detection. ACS Appl Mater Interfaces 5(14):6494–6501

    Article  CAS  Google Scholar 

  24. Souza DZ, Boehl PO, Comiran E, Mariotti KC, Pechansky F, Duarte PC, De Boni R, Froehlich PE, Limberger RP (2011) Determination of amphetamine-type stimulants in oral fluid by solid-phase microextraction and gas chromatography–mass spectrometry. Anal Chim Acta 696(1):67–76

    Article  CAS  Google Scholar 

  25. Djozan D, Farajzadeh MA, Sorouraddin SM, Baheri T (2012) Determination of methamphetamine, amphetamine and ecstasy by inside-needle adsorption trap based on molecularly imprinted polymer followed by GC-FID determination. Microchim Acta 179(3–4):209–217

    Article  CAS  Google Scholar 

  26. Zhu KY, Leung KW, Ting AK, Wong ZC, Ng WY, Choi RC, Dong TT, Wang T, Lau DT, Tsim KW (2012) Microfluidic chip based nano liquid chromatography coupled to tandem mass spectrometry for the determination of abused drugs and metabolites in human hair. Anal Bioanal Chem 402(9):2805–2815

    Article  CAS  Google Scholar 

  27. Zhang L-Y, Liu Y-J (2014) Label-free amperometric immunosensor based on prussian blue as artificial peroxidase for the detection of methamphetamine. Anal Chim Acta 806:204–209

    Article  CAS  Google Scholar 

  28. He C, He QG, Deng CM, Shi LQ, Fu YY, Cao HM, Cheng JG (2011) Determination of Methamphetamine Hydrochloride by highly fluorescent polyfluorene with NH2-terminated side chains. Synth Met 161:293–297

    Article  CAS  Google Scholar 

  29. Seidi S, Yamini Y, Baheri T, Feizbakhsh R (2011) Electrokinetic extraction on artificial liquid membranes of amphetamine-type stimulants from urine samples followed by high performance liquid chromatography analysis. J Chromatogr A 1218(26):3958–3965

    Article  CAS  Google Scholar 

  30. Lin Y-H, Lee M-R, Lee R-J, Ko W-K, Wu S-M (2007) Hair analysis for methamphetamine, ketamine, morphine and codeine by cation-selective exhaustive injection and sweeping micellar electrokinetic chromatography. J Chromatogr A 1145(1):234–240

    Article  CAS  Google Scholar 

  31. Guerra MR, Chianella I, Piletska EV, Karim K, Turner AP, Piletsky SA (2009) Development of a piezoelectric sensor for the detection of methamphetamine. Analyst 134(8):1565–1570

    Article  Google Scholar 

  32. Urine Testing for Drugs of Abuse, NIDA Research Monograph 73, (1986).

Download references

Acknowledgements

This work was partially supported by National Scientific Foundation of China (31100723), Guangdong Natural Science Foundation (S2011040001778), Guangzhou Science and Information Technology Bureau (2013 J2200053, 2014 J4100108), Shenzhen Research Program (JC201105201055A, JCYJ20120831160213584), and Shenzhen-HongKong Innovation Circle Program (ZYB200907060011A).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiunan Shi or Changqing Yi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Q., Shi, Y., Pan, Y. et al. Colorimetric and bare eye determination of urinary methylamphetamine based on the use of aptamers and the salt-induced aggregation of unmodified gold nanoparticles. Microchim Acta 182, 505–511 (2015). https://doi.org/10.1007/s00604-014-1349-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-014-1349-8

Keywords

Navigation