Skip to main content

Advertisement

Log in

Application of gold nanoclusters in fluorescence sensing and biological detection

  • Critical Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Gold nanoclusters (Au NCs) exhibit broad fluorescent spectra from visible to near-infrared regions and good enzyme-mimicking catalytic activities. Combined with excellent stability and exceptional biocompatibility, the Au NCs have been widely exploited in biomedicine such as biocatalysis and bioimaging. Especially, the long fluorescence lifetime and large Stokes shift attribute Au NCs to good probes for fluorescence sensing and biological detection. In this review, we systematically summarized the molecular structure and fluorescence properties of Au NCs and highlighted the advances in fluorescence sensing and biological detection. The Au NCs display high sensitivity and specificity in detecting iodine ions, metal ions, and reactive oxygen species, as well as certain diseases based on the fluorescence activities of Au NCs. We also proposed several points to improve the practicability and accelerate the clinical translation of the Au NCs.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig.4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Liu H, Li Y, Sun S, Xin Q, Liu S, Mu X, et al. Catalytically potent and selective clusterzymes for modulation of neuroinflammation through single-atom substitutions. Nat Commun. 2021;12(1):114.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mu X, Wang J, He H, Li Q, Yang B, Wang J, et al. An oligomeric semiconducting nanozyme with ultrafast electron transfers alleviates acute brain injury. Sci Adv. 2021;7(46): eabk1210.

  3. Sun S, Liu H, Xin Q, Chen K, Ma H, Liu S, et al. Atomic engineering of clusterzyme for relieving acute neuroinflammation through lattice expansion. Nano Lett. 2021;21(6):2562–71.

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Chen K, Sun S, Wang J, Zhang X-D. Catalytic nanozymes for central nervous system disease. Coord Chem Rev. 2021;432: 213751.

    Article  CAS  Google Scholar 

  5. Zhang Y, Ni S, Chong C, Xu J, Mu X, Zhang X-D. Biocatalysts at atom level: from coordination structure to medical applications. Appl Mater Today. 2021;23: 101029.

    Article  Google Scholar 

  6. Zhou X, Huang S, Zhang D, Liu W, Gao W, Xue Y, et al. Gold nanocluster-based fluorescent microneedle platform toward visual detection of ATP. Anal Chem. 2023;95(32):12104–12.

    Article  CAS  PubMed  Google Scholar 

  7. Mu X, He H, Wang J, Long W, Li Q, Liu H, et al. Carbogenic nanozyme with ultrahigh reactive nitrogen species selectivity for traumatic brain injury. Nano Lett. 2019;19(7):4527–34.

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Welsher K, Liu Z, Sherlock S, Robinson J, Chen Z, Daranciang D, et al. A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat Nanotechnol. 2009;4(11):773–80.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li C, Li F, Zhang Y, Zhang W, Zhang X, Wang Q. Real-time monitoring surface chemistry-dependent behaviors of protein nanocages via encapsulating an NIR-II Ag2S quantum dot. ACS Nano. 2015;9(12):12255–63.

    Article  CAS  PubMed  Google Scholar 

  10. Shao W, Chen G, Kuzmin A, Kutscher H, Pliss A, Ohulchanskyy T, et al. Tunable narrow band emissions from dye-sensitized core/shell/shell nanocrystals in the second near-infrared biological window. J Am Chem Soc. 2016;138(50):16192–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hong G, Zou Y, Antaris A, Diao S, Wu D, Cheng K, et al. Ultrafast fluorescence imaging with conjugated polymer fluorophores in the second near-infrared window. Nat Commun. 2014;5:5206.

    Article  Google Scholar 

  12. Wang S, Fan Y, Li D, Sun C, Lei Z, Lu L, et al. Anti-quenching NIR-II molecular fluorophores for in vivo high-contrast imaging and pH sensing. Nat Commun. 2019;10:1058.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  13. Liu S, Li Y, Kwok R, Lam J, Tang B. Structural and process controls of AIEgens for NIR-II theranostics. Chem Sci. 2021;12(10):3427–36.

    Article  CAS  Google Scholar 

  14. Li B, Zhao M, Zhang F. Rational design of near-infrared-II organic molecular dyes for bioimaging and biosensing. ACS Mater Lett. 2020;2(8):905–17.

    Article  CAS  Google Scholar 

  15. Ma H, Zhang X, Liu L, Huang Y, Sun S, Chen K, et al. Bioactive NIR-II gold clusters for three-dimensional imaging and acute inflammation inhibition. Sci Adv. 2023;9(31):eadh7828.

  16. Liu P, Mu X, Zhang X-D, Ming D. The near-infrared-II fluorophores and advanced microscopy technologies development and application in bioimaging. Bioconjug Chem. 2019;31(2):260–75.

    Article  PubMed  Google Scholar 

  17. Chen L, Wang C, Yuan Z, Chang H. Fluorescent gold nanoclusters: recent advances in sensing and imaging. Anal Chem. 2015;87(1):216–29.

    Article  CAS  PubMed  Google Scholar 

  18. Liu H, Hong G, Luo Z, Chen J, Chang J, Gong M, et al. Atomic-precision gold clusters for NIR-II imaging. Adv Mater. 2019;31(46):1901015.

    Article  CAS  Google Scholar 

  19. Huang Y, Chen K, Liu L, Ma H, Zhang X, Tan K, et al. Single atom-engineered NIR-II gold clusters with ultrahigh brightness and stability for acute kidney injury. Small. 2023;19(30):2300145.

    Article  CAS  Google Scholar 

  20. Bian P, Zhang J, Wang J, Yang J, Wang J, Liu H, et al. Enhanced catalysis of ultrasmall Au-MoS 2 clusters against reactive oxygen species for radiation protection. Sci Bull. 2018;63(14):925–34.

    Article  CAS  Google Scholar 

  21. Qian H, Jiang DE, Li G, Gayathri C, Das A, Gil RR, et al. Monoplatinum doping of gold nanoclusters and catalytic application. J Am Chem Soc. 2012;134(39):16159–62.

    Article  CAS  PubMed  Google Scholar 

  22. Chib R, Butler S, Raut S, Shah S, Borejdo J, Gryczynski Z, et al. Effect of quencher, denaturants, temperature and pH on the fluorescent properties of BSA protected gold nanoclusters. J Lumin. 2015;168:62–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu S, Zhao Y, Hao W, Zhang X-D, Ming D. Micro- and nanotechnology for neural electrode-tissue interfaces. Biosens Bioelectron. 2020;170: 112645.

    Article  CAS  PubMed  Google Scholar 

  24. Zheng K, Setyawati MI, Leong DT, Xie J. Antimicrobial gold nanoclusters. ACS Nano. 2017;11(7):6904–10.

    Article  CAS  PubMed  Google Scholar 

  25. Zheng Y, Wu J, Jiang H, Wang X. Gold nanoclusters for theranostic applications. Coord Chem Rev. 2021;431: 213689.

    Article  CAS  Google Scholar 

  26. Loynachan CN, Soleimany AP, Dudani JS, Lin Y, Najer A, Bekdemir A, et al. Renal clearable catalytic gold nanoclusters for in vivo disease monitoring. Nat Nanotechnol. 2019;14(9):883–90.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yao Q, Yuan X, Fung V, Yu Y, Leong DT, Jiang De, et al. Understanding seed-mediated growth of gold nanoclusters at molecular level. Nat Commun. 2017;8(1):927.

  28. Jin R. Quantum sized, thiolate-protected gold nanoclusters. Nanoscale. 2010;2(3):343–62.

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Yougbare S, Chang T, Tan S, Kuo J, Hsu P, Su C, et al. Antimicrobial gold nanoclusters: recent developments and future perspectives. Int J Mol Sci. 2019;20(12):2924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen J, Liu L, Liu H, Li Y, Wang J, Mu X, et al. Ultrabright bimetallic AuAg complex: from luminescence mechanism to biological application. J Innov Opt Health Sci. 2020;13(05):2041001.

    Article  CAS  Google Scholar 

  31. Zhang K, Song H, Su Y, Li Q, Sun M, Lv Y. Flower-like gold nanoparticles for in situ tailoring luminescent molecules for synergistic enhanced chemiluminescence. Anal Chem. 2022;94(25):8947–57.

    Article  CAS  PubMed  Google Scholar 

  32. Wang J, Mu X, Li Y, Xu F, Long W, Yang J, et al. Hollow PtPdRh nanocubes with enhanced catalytic activities for in vivo clearance of radiation-induced ROS via surface-mediated bond breaking. Small. 2018;14(13):1703736.

    Article  Google Scholar 

  33. Zheng Y, Lai L, Liu W, Jiang H, Wang X. Recent advances in biomedical applications of fluorescent gold nanoclusters. Adv Colloid Interface Sci. 2017;242:1–16.

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Qu X, Li Y, Li L, Wang Y, Liang J, Liang J. Fluorescent gold nanoclusters: synthesis and recent biological application. J Nanomaterials. 2015;784097:23.

    Google Scholar 

  35. Kong X, Tian J, Fang Y, Chen T, Yu R, He J-Y, et al. Terbium metal-organic framework/bovine serum albumin capped gold nanoclusters-based dual-emission reverse change ratio fluorescence nanoplatform for fluorimetric and colorimetric sensing of heparin and chondroitin sulfate. Sens Actuators B Chem. 2022;356: 131331.

    Article  CAS  Google Scholar 

  36. Chen L, Liu D, Peng J, Du Q, He H. Ratiometric fluorescence sensing of metal-organic frameworks: tactics and perspectives. Coord Chem Rev. 2020;404: 213113.

    Article  ADS  CAS  Google Scholar 

  37. Zhao R, Liu H, Li Y, Guo M, Zhang X-D. Catalytic nanozyme for radiation protection. Bioconjug Chem. 2021;32(3):411–29.

    Article  CAS  PubMed  Google Scholar 

  38. Liu J, Sun YQ, Huo Y, Zhang H, Wang L, Zhang P, et al. Simultaneous fluorescence sensing of Cys and GSH from different emission channels. J Am Chem Soc. 2014;136(2):574–7.

    Article  CAS  PubMed  Google Scholar 

  39. Wang H, Mu X, Yang J, Liang Y, Zhang X-D, Ming D. Brain imaging with near-infrared fluorophores. Coord Chem Rev. 2019;380:550–71.

    Article  CAS  Google Scholar 

  40. Tang Z, Chen F, Wang D, Xiong D, Yan S, Liu S, et al. Fabrication of avidin-stabilized gold nanoclusters with dual emissions and their application in biosensing. J Nanobiotechnology. 2022;20(1):306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Qian S, Wang Z, Zuo Z, Wang X, Wang Q, Yuan X. Engineering luminescent metal nanoclusters for sensing applications. Coord Chem Rev. 2022;451: 214268.

    Article  CAS  Google Scholar 

  42. Zhou X, Wang X, Shang L. Ratiometric fluorescence and visual sensing of ATP based on gold nanocluster-encapsulated metal-organic framework with a smartphone. Chin Chem Lett. 2023;34(8): 108093.

    Article  CAS  Google Scholar 

  43. Wu Y, Jin X, Ashrafzadeh Afshar E, Taher MA, Xia C, Joo S-W, et al. Simple turn-off fluorescence sensor for determination of raloxifene using gold nanoparticles stabilized by chitosan hydrogel. Chemosphere. 2022;305: 135392.

    Article  CAS  PubMed  Google Scholar 

  44. Zhou S, Xu H, Gan W, Yuan Q. Graphene quantum dots: recent progress in preparation and fluorescence sensing applications. RSC Adv. 2016;6(112):110775–88.

    Article  ADS  CAS  Google Scholar 

  45. Dornsiepen E, Eussner JP, Rosemann NW, Chatterjee S, Dehnen S. Syntheses and properties of gold-organotin sulfide clusters. Inorg Chem. 2017;56(18):11326–35.

    Article  CAS  PubMed  Google Scholar 

  46. Mohanty JS, Chaudhari K, Sudhakar C, Pradeep T. Metal-ion-induced luminescence enhancement in protein protected gold clusters. J Phys Chem C. 2019;123(47):28969–76.

    Article  CAS  Google Scholar 

  47. Croissant JG, Zhang D, Alsaiari S, Lu J, Deng L, Tamanoi F, et al. Protein-gold clusters-capped mesoporous silica nanoparticles for high drug loading, autonomous gemcitabine/doxorubicin co-delivery, and in-vivo tumor imaging. J Control Release. 2016;229:183–91.

    Article  CAS  PubMed  Google Scholar 

  48. Wu Z, Yao Q, Zang S, Xie J. Directed self-assembly of ultrasmall metal nanoclusters. ACS Mater Lett. 2019;1(2):237–48.

    Article  CAS  Google Scholar 

  49. Chevrier DM, Thanthirige VD, Luo Z, Driscoll S, Cho P, MacDonald MA, et al. Structure and formation of highly luminescent protein-stabilized gold clusters. Chem Sci. 2018;9(10):2782–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sargazi S, Fatima I, Hassan Kiani M, Mohammadzadeh V, Arshad R, Bilal M, et al. Fluorescent-based nanosensors for selective detection of a wide range of biological macromolecules: a comprehensive review. Int J Biol Macromol. 2022;206:115–47.

    Article  CAS  PubMed  Google Scholar 

  51. Yamazoe S, Takano S, Kurashige W, Yokoyama T, Nitta K, Negishi Y, et al. Hierarchy of bond stiffnesses within icosahedral-based gold clusters protected by thiolates. Nat Commun. 2016;7:10414.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dou X, Yuan X, Yu Y, Luo Z, Yao Q, Leong D, et al. Lighting up thiolated Au@Ag nanoclusters aggregation-induced emission. Nanoscale. 2014;6(1):157–61.

    Article  ADS  CAS  PubMed  Google Scholar 

  53. Pyo K, Thanthirige V, Kwak K, Pandurangan P, Ramakrishna G, Lee D. Ultrabright luminescence from gold nanoclusters: rigidifying the Au(I)-thiolate shell. J Am Chem Soc. 2015;137(25):8244–50.

    Article  CAS  PubMed  Google Scholar 

  54. Li H, Zhu W, Wan A, Liu L. The mechanism and application of the protein-stabilized gold nanocluster sensing system. Analyst. 2017;142(4):567–81.

    Article  ADS  CAS  PubMed  Google Scholar 

  55. Wu Z, Yao Q, Chai O, Ding N, Xu W, Zang S, et al. Unraveling the impact of gold(i)-thiolate motifs on the aggregation-induced emission of gold nanoclusters. Angew Chem Int Ed. 2020;59(25):9934–9.

    Article  CAS  Google Scholar 

  56. Ai P, Mauro M, Danopoulos AA, Muñoz-Castro A, Braunstein P. Dual emission of a cyclic hexanuclear gold(i) complex. interplay between Au3 and Au2 ligand-supported luminophores. The Journal of Physical Chemistry C. 2018;123(1):915–21.

  57. Mo L, Jia J, Sun L, Wang Q. Solvent-induced intercluster rearrangements and the reversible luminescence responses in sulfide bridged gold(i)–silver(i) clusters. Chem Commun. 2012;48(69):8691.

    Article  CAS  Google Scholar 

  58. Yao L, Yam V. Dual emissive gold(I)-sulfido cluster framework capable of benzene-cyclohexane separation in the solid state accompanied by luminescence color changes. J Am Chem Soc. 2021;143(6):2558–66.

    Article  CAS  PubMed  Google Scholar 

  59. Liu C, Wei X, Chen Y, Wang H, Ge J, Xu Y, et al. Tetradecanuclear and octadecanuclear gold(i) sulfido clusters: synthesis, structures, and luminescent selective tracking of lysosomes in living cells. Inorg Chem. 2019;58(6):3690–7.

    Article  CAS  PubMed  Google Scholar 

  60. Sheng X, Li E, Zhou Y, Zhao R, Zhu W, Huang F. Separation of 2-chloropyridine/3-chloropyridine by nonporous adaptive crystals of pillararenes with different substituents and cavity sizes. J Am Chem Soc. 2020;142(13):6360–4.

    Article  CAS  PubMed  Google Scholar 

  61. Xu G, Wu L, Chang X, Ang T, Wong W, Huang J, et al. Solvent-induced cluster-to-cluster transformation of homoleptic gold(I) thiolates between catenane and ring-in-ring structures. Angew Chem Int Ed. 2019;58(45):16297–306.

    Article  CAS  Google Scholar 

  62. Yao L, Chen Z, Zhang K, Yam V. Heterochiral self-discrimination-driven supramolecular self-assembly of decanuclear gold(i)-sulfido complexes into 2D nanostructures with chiral anions-tuned morphologies. Angew Chem Int Ed. 2020;59(47):21163–9.

    Article  CAS  Google Scholar 

  63. Agrawal S, Mysko RA, Nigra MM, Mohanty SK, Hoepfner MP. Plasmonic photocatalytic enhancement of l-cysteine self-assembled gold nanoparticle clusters for fenton reaction catalysis. Langmuir. 2021;37(11):3281–7.

    Article  CAS  PubMed  Google Scholar 

  64. Ebina A, Hossain S, Horihata H, Ozaki S, Kato S, Kawawaki T, et al. One-, two-, and three-dimensional self-assembly of atomically precise metal nanoclusters. Nanomaterials. 2020;10(6):1105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Shi L, Zhu L, Guo J, Zhang L, Shi Y, Zhang Y, et al. Self-assembly of chiral gold clusters into crystalline nanocubes of exceptional optical activity. Angew Chem Int Ed. 2017;56(48):15397–401.

    Article  CAS  Google Scholar 

  66. Wu Z, Du Y, Liu J, Yao Q, Chen T, Cao Y, et al. Aurophilic interactions in the self-assembly of gold nanoclusters into nanoribbons with enhanced luminescence. Angew Chem Int Ed. 2019;58(24):8139–44.

    Article  CAS  Google Scholar 

  67. Huang R, Wei Y, Dong X, Wu X, Du C, Zang S, et al. Hypersensitive dual-function luminescence switching of a silver-chalcogenolate cluster-based metal-organic framework. Nat Chem. 2017;9(7):689–97.

    Article  CAS  PubMed  Google Scholar 

  68. Azubel M, Koivisto J, Malola S, Bushnell D, Hura G, Koh A, et al. Electron microscopy of gold nanoparticles at atomic resolution. Science. 2014;345(6199):909–12.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  69. Chang H, Karan NS, Shin K, Bootharaju MS, Nah S, Chae SI, et al. Highly fluorescent gold cluster assembly. J Am Chem Soc. 2021;143(1):326–34.

    Article  CAS  PubMed  Google Scholar 

  70. Zhou M, Higaki T, Hu G, Sfeir M, Chen Y, Jiang D, et al. Three-orders-of-magnitude variation of carrier lifetimes with crystal phase of gold nanoclusters. Science. 2019;364:279–84.

    Article  ADS  CAS  PubMed  Google Scholar 

  71. Sakthivel N, Dass A. Aromatic thiolate-protected series of gold nanomolecules and a contrary structural trend in size evolution. Acc Chem Res. 2018;51(8):1774–83.

    Article  CAS  PubMed  Google Scholar 

  72. Xie Z, Sun P, Wang Z, Li H, Yu L, Sun D, et al. Metal-organic gels from silver nanoclusters with aggregation-induced emission and fluorescence-to-phosphorescence switching. Angew Chem Int Ed. 2020;59(25):9922–7.

    Article  CAS  Google Scholar 

  73. Wang Z, Li Q, Tan L, Liu C, Shang L. Metal-organic frameworks-mediated assembly of gold nanoclusters for sensing applications. J Anal Test. 2022;6(2):163–77.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Gao Y, Wang C, Zhang C, Li H, Wu Y. Glutathione protected bimetallic gold-platinum nanoclusters with near-infrared emission for ratiometric determination of silver ions. Microchim Acta. 2021;188(2):50.

    Article  CAS  Google Scholar 

  75. Huang J, Mo X, Fu H, Sun Y, Gao Q, Chen X, et al. Tyndall-effect-enhanced supersensitive naked-eye determination of mercury (II) ions with silver nanoparticles. Sens Actuators B Chem. 2021;344: 130218.

    Article  CAS  Google Scholar 

  76. Araki J, Hida Y. Comparison of methods for quantitative determination of silver content in cellulose nanowhisker/silver nanoparticle hybrids. Cellulose. 2018;25(2):1065–76.

    Article  CAS  Google Scholar 

  77. Du C, Liu B, Hu J, Li H. Determination of iodine number of activated carbon by the method of ultraviolet–visible spectroscopy. Mater Res Lett. 2021;285: 129137.

    Article  CAS  Google Scholar 

  78. González J, Wang JA, Chen LF, Manríquez M, Salmones J, Limas R, et al. Quantitative determination of oxygen defects, surface Lewis acidity, and catalytic properties of mesoporous MoO3/SBA-15 catalysts. J Solid State Chem. 2018;263:100–14.

    Article  ADS  Google Scholar 

  79. Ruan SL, Zhou Y, Zhang M, Zhang HY, Wang YR, Hu P. Rapid determination of cysteine and chiral discrimination of D-/L-cysteine via the aggregation-induced emission enhancement of gold nanoclusters by Ag+. Anal Chem. 2022;38(3):541–51.

    CAS  Google Scholar 

  80. Wu Z, Lu J, Fu Q, Sheng L, Liu B, Wang C, et al. A smartphone-based enzyme-linked immunochromatographic sensor for rapid quantitative detection of carcinoembryonic antigen. Sens Actuators B Chem. 2021;329: 129163.

    Article  CAS  Google Scholar 

  81. An X, Tan Q, Pan S, Zhen S, Hu Y, Hu X. Determination of xanthine using a ratiometric fluorescence probe based on boron-doped carbon quantum dots and gold nanoclusters. Mikrochim Acta. 2022;189(4):148.

    Article  CAS  PubMed  Google Scholar 

  82. Zhou C, Wang N, Lv Y, Sun H, Wang G, Su X. Cascade reaction biosensor based on gold nanocluster decorated iron-cobalt oxide nanosheets as a superior peroxidase mimic for dual-mode detection of α-glucosidase and its inhibitor. Talanta. 2023;254: 124148.

    Article  CAS  PubMed  Google Scholar 

  83. Li Z, Liu R, Xing G, Wang T, Liu S. A novel fluorometric and colorimetric sensor for iodide determination using DNA-templated gold/silver nanoclusters. Biosens Bioelectron. 2017;96:44–8.

    Article  CAS  PubMed  Google Scholar 

  84. Islam S. Cyanide at the origin of metabolism. Nat Chem. 2022;14(2):123–5.

    Article  CAS  PubMed  Google Scholar 

  85. Razanamahandry L, Onwordi C, Saban W, Bashir A, Mekuto L, Malenga E, et al. Performance of various cyanide degrading bacteria on the biodegradation of free cyanide in water. J Hazard. 2019;380:19–20.

    Google Scholar 

  86. Bostelaar T, Vitvitsky V, Kumutirna J, Lewis B, Yadav P, Brunold T, et al. Hydrogen sulfide oxidation by myoglobin. J Am Chem Soc. 2016;138(27):8476–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Li S, Ma Q, Wang C, Yang K, Hong Z, Chen Q, et al. Near-infrared II gold nanocluster assemblies with improved luminescence and biofate for in vivo ratiometric imaging of H2S. Anal Chem. 2022;94(5):2641–7.

    Article  CAS  PubMed  Google Scholar 

  88. Sokolov A, Nekrasov P, Shaposhnikov M, Moskalev A. Hydrogen sulfide in longevity and pathologies: inconsistency is malodorous. Ageing Res Rev. 2021;67: 101262.

    Article  CAS  PubMed  Google Scholar 

  89. Yu F, Huang H, Shi J, Liang A, Jiang Z. A new gold nanoflower sol SERS method for trace iodine ion based on catalytic amplification. Spectrochim Acta A Mol Biomol Spectrosc. 2021;255: 119738.

    Article  CAS  PubMed  Google Scholar 

  90. Jiang R, Zhang Y, Zhang Q, Li L, Yang L. Carbon dot/gold nanocluster-based fluorescent colorimetric paper strips for quantitative detection of iodide ions in urine. Acs Appl Nano Mater. 2021;4(9):9760–7.

    Article  CAS  Google Scholar 

  91. Khan I, Niazi S, Yu Y, Mohsin A, Mushtaq B, Iqbal M, et al. Aptamer induced multicolored AuNCs-WS2 “Turn on” FRET nano platform for dual-color simultaneous detection of aflatoxinb and zearalenone. Anal Chem. 2019;91(21):14085–92.

    Article  CAS  PubMed  Google Scholar 

  92. Chen Q, Yao Y, Liao J, Li J, Xu J, Wang T, et al. Subnanometer ion channel anion exchange membranes having a rigid benzimidazole structure for selective anion separation. ACS Nano. 2022;16(3):4629–41.

    Article  CAS  PubMed  Google Scholar 

  93. Zheng X, Song Y, Liu Y, Li J, Yang Y, Wu D, et al. Synthesis of phase junction cadmium sulfide photocatalyst under sulfur-rich solution system for efficient photocatalytic hydrogen evolution. Small. 2023;19:2207623.

    Article  CAS  Google Scholar 

  94. Yong Z, Yap L, Shi Q, Chesman A, Chen E, Fu R, et al. Omnidirectional hydrogen generation based on a flexible black gold nanotube array. ACS Nano. 2022;16:14963–72.

    Article  CAS  PubMed  Google Scholar 

  95. Tseng W, Rau J, Chiou H, Tseng W. Synthesis of gold nanoclusters-loaded lysozyme nanoparticles for ratiometric fluorescent detection of cyanide in tap water, cyanogenic glycoside-containing plants, and soils. Environ Res. 2022;207: 112144.

    Article  CAS  PubMed  Google Scholar 

  96. Wang J, Qiu Y, Li D, Liu X, Jiang C, Huang L, et al. Ratiometric fluorometric and visual determination of cyanide based on the use of carbon dots and gold nanoclusters. Mikrochim Acta. 2019;186:809.

    Article  CAS  PubMed  Google Scholar 

  97. Wang W, Kong Y, Jiang J, Xie Q, Huang Y, Li G, et al. Engineering the protein corona structure on gold nanoclusters enables red-shifted emissions in the second near-infrared window for gastrointestinal imaging. Angew Chem Int Ed. 2020;59(50):22431–5.

    Article  CAS  Google Scholar 

  98. Yang H, Yang Y, Liu S, Zhan X, Zhou H, Li X, et al. Ratiometric and sensitive cyanide sensing using dual-emissive gold nanoclusters. Anal Bioanal Chem. 2020;412(23):5819–26.

    Article  PubMed  Google Scholar 

  99. Xiang H, He S, Zhao G, Zhang M, Lin J, Yang L, et al. Gold nanocluster-based ratiometric probe with surface structure regulation-triggered sensing of hydrogen sulfide in living organisms. Acs Appl Mater Inter. 2023;15(10):12643–52.

    Article  CAS  Google Scholar 

  100. Yan L, Gu Q, Jiang W, Tan M, Tan Z, Mao G, et al. Near-infrared fluorescent probe with large stokes shift for imaging of hydrogen sulfide in tumor-bearing mice. Anal Chem. 2022;94(14):5514–20.

    Article  CAS  PubMed  Google Scholar 

  101. Singh N, Sharma S, Singh R, Rajput S, Chattopadhyay N, Tewari D, et al. A naphthalimide-based peptide conjugate for concurrent imaging and apoptosis induction in cancer cells by utilizing endogenous hydrogen sulfide. Chem Sci. 2021;12(48):16085–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Duan C, Won M, Verwilst P, Xu J, Kim H, Zeng L, et al. In vivo imaging of endogenously produced HCLO in zebrafish and mice using a bright, photostable ratiometric fluorescent probe. Anal Chem. 2019;91(6):4172–8.

    Article  CAS  PubMed  Google Scholar 

  103. Zuo M, Duan Q, Li C, Ge J, Wang Q, Li Z, et al. A versatile strategy for constructing ratiometric upconversion luminescent probe with sensitized emission of energy acceptor. Anal Chem. 2021;93(13):5635–43.

    Article  CAS  PubMed  Google Scholar 

  104. Yu Y, Li G, Wu D, Zheng F, Zhang X, Liu J, et al. Determination of hydrogen sulfide in wines based on chemical-derivatization-triggered aggregation-induced emission by high-performance liquid chromatography with fluorescence detection. J Agr Food Chem. 2020;68(3):876–83.

    Article  ADS  CAS  Google Scholar 

  105. Xu T, Scafa N, Xu L, Zhou S, Al-Ghanem K, Mahboob S, et al. Electrochemical hydrogen sulfide biosensors. Analyst. 2016;141(4):1185–95.

    Article  ADS  CAS  PubMed  Google Scholar 

  106. Qin Z, Su W, Liu P, Ma J, Zhang Y, Jiao T. Facile preparation of a rhodamine B derivative-based fluorescent probe for visual detection of iron ions. ACS Omega. 2021;6(38):25040–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Amiri M, Salehniya H, Habibi-Yangjeh A. Graphitic carbon nitride/chitosan composite for adsorption and electrochemical determination of mercury in real samples. Ind Eng Chem Res. 2016;55(29):8114–22.

    Article  CAS  Google Scholar 

  108. Janani B, Syed A, Thomas AM, Bahkali AH, Elgorban AM, Raju LL, et al. UV–vis spectroscopic method for the sensitive and selective detection of mercury by silver nanoparticles in presence of alanine. Optik. 2020;204: 164160.

    Article  ADS  CAS  Google Scholar 

  109. Khoshbin Z, Housaindokht MR, Verdian A, Bozorgmehr MR. Simultaneous detection and determination of mercury (II) and lead (II) ions through the achievement of novel functional nucleic acid-based biosensors. Biosens Bioelectron. 2018;116:130–47.

    Article  CAS  PubMed  Google Scholar 

  110. Liu J, Wu D, Yan X, Guan Y. Naked-eye sensor for rapid determination of mercury ion. Talanta. 2013;116:563–8.

    Article  CAS  PubMed  Google Scholar 

  111. Narayanan KB, Han SS. Highly selective and quantitative colorimetric detection of mercury(II) ions by carrageenan-functionalized Ag/AgCl nanoparticles. Carbohydr Polym. 2017;160:90–6.

    Article  CAS  PubMed  Google Scholar 

  112. Omer KM, Hama Aziz KH, Mohammed SJ. Improvement of selectivity via the surface modification of carbon nanodots towards the quantitative detection of mercury ions. New J Chem. 2019;43(33):12979–86.

    Article  CAS  Google Scholar 

  113. Liu W, Wang X, Wang Y, Li J, Shen D, Kang Q, et al. Ratiometric fluorescence sensor based on dithiothreitol modified carbon dots-gold nanoclusters for the sensitive detection of mercury ions in water samples. Sens Actuators B Chem. 2018;262:810–7.

    Article  CAS  Google Scholar 

  114. Lee J, Park J, Hee Lee H, Park H, Kim HI, Kim WJ. Fluorescence switch for silver ion detection utilizing dimerization of DNA-Ag nanoclusters. Biosens Bioelectron. 2015;68:642–7.

    Article  CAS  PubMed  Google Scholar 

  115. Kim JH, Kim KB, Park JS, Min N. Single cytosine-based electrochemical biosensor for low-cost detection of silver ions. Sens Actuators B Chem. 2017;245:741–6.

    Article  CAS  Google Scholar 

  116. Long Q, Wen Y, Li H, Zhang Y, Yao S. A novel fluorescent biosensor for detection of silver ions based on upconversion nanoparticles. J Fluoresc. 2017;27(1):205–11.

    Article  CAS  PubMed  Google Scholar 

  117. Saleh SM, Almotiri MK, Ali R. Green synthesis of highly luminescent gold nanoclusters and their application in sensing Cu(II) and Hg(II). J Photochem. 2022;426: 113719.

    CAS  Google Scholar 

  118. Zhang Y, Jiang H, Wang X. Cytidine-stabilized gold nanocluster as a fluorescence turn-on and turn-off probe for dual functional detection of Ag(+) and Hg(2+). Anal Chim Acta. 2015;870:1–7.

    Article  ADS  CAS  PubMed  Google Scholar 

  119. Jiang H, Zhang Y, Wang X. Single cytidine units-templated syntheses of multicolored water-soluble Au nanoclusters. Nanoscale. 2014;6(17):10355–62.

    Article  ADS  CAS  PubMed  Google Scholar 

  120. Dai H, Shi Y, Wang Y, Sun Y, Hu J, Ni P, et al. Label-free turn-on fluorescent detection of melamine based on the anti-quenching ability of Hg2+ to gold nanoclusters. Biosens Bioelectron. 2014;53:76–81.

    Article  CAS  PubMed  Google Scholar 

  121. Mu X, Qi L, Dong P, Qiao J, Hou J, Nie Z, et al. Facile one-pot synthesis of L-proline-stabilized fluorescent gold nanoclusters and its application as sensing probes for serum iron. Biosens Bioelectron. 2013;49:249–55.

    Article  CAS  PubMed  Google Scholar 

  122. Wang R, Wang W, Ren H, Chae J. Detection of copper ions in drinking water using the competitive adsorption of proteins. Biosens Bioelectron. 2014;57:179–85.

    Article  CAS  PubMed  Google Scholar 

  123. Khan I, Niazi S, Yu Y, Pasha I, Yue L, Mohsin A, et al. Fabrication of PAA coated green-emitting AuNCs for construction of label -free FRET assembly for specific recognition of T-2 toxin. Sens Actuators B Chem. 2020;321: 128470.

    Article  CAS  Google Scholar 

  124. Kalinowska M, Sienkiewicz-Gromiuk J, Swiderski G, Pietryczuk A, Cudowski A, Lewandowski W. Zn(II) complex of plant phenolic chlorogenic acid: antioxidant, antimicrobial and structural studies. Materials. 2020;13:3745.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ali R, Saleh S, Aly S. Fluorescent gold nanoclusters as pH sensors for the pH 5 to 9 range and for imaging of blood cell pH values. Mikrochim Acta. 2017;184(9):3309–15.

    Article  CAS  Google Scholar 

  126. Desai ML, Basu H, Saha S, Singhal RK, Kailasa SK. One pot synthesis of fluorescent gold nanoclusters from extract for independent detection of Cd2+, Zn2+ and Cu2+ ions with high sensitivity. J Mol Liq. 2020;304: 112697.

    Article  CAS  Google Scholar 

  127. Gong M, Dai H. A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Res. 2014;8(1):23–39.

    Article  Google Scholar 

  128. Tang C, Asirib AM, Sun XP. Highly-active oxygen evolution electrocatalyzed by a Fe-doped NiSe nanoflake array electrode. Chem Comm. 2016;52(24):4529–32.

    Article  CAS  PubMed  Google Scholar 

  129. Zamojc K, Zdrowowicz M, Rudnicki-Velasquez PB, Krzyminski K, Zaborowski B, Niedzialkowski P, et al. The development of 1,3-diphenylisobenzofuran as a highly selective probe for the detection and quantitative determination of hydrogen peroxide. Free Radic Res. 2017;51(1):38–46.

    Article  CAS  PubMed  Google Scholar 

  130. Dong W, Sun C, Sun M, Ge H, Asiri A, Marwani H, et al. Fluorescent copper nanoclusters for the iodide-enhanced detection of hypochlorous acid. Acs Appl Nano Mater. 2020;3(1):312–8.

    Article  CAS  Google Scholar 

  131. Quan Z, Xue F, Li H, Chen Z, Wang L, Zhu H, et al. A bioinspired ratiometric fluorescence probe based on cellulose nanocrystal-stabilized gold nanoclusters for live-cell and zebrafish imaging of highly reactive oxygen species. Chem Eng J. 2022;431: 133954.

    Article  CAS  Google Scholar 

  132. Chen T, Hu Y, Cen Y, Chu X, Lu Y. A dual-emission fluorescent nanocomplex of gold-cluster-decorated silica particles for live cell imaging of highly reactive oxygen species. J Am Chem Soc. 2013;135(31):11595–602.

    Article  CAS  PubMed  Google Scholar 

  133. Li P, Lin J, Chen C, Ciou W, Chan P, Luo L, et al. Using gold nanoclusters as selective luminescent probes for phosphate-containing metabolites. Anal Chem. 2012;84(13):5484–8.

    Article  CAS  PubMed  Google Scholar 

  134. Wei H, Wang Z, Zhang J, House S, Gao Y, Yang L, et al. Time-dependent, protein-directed growth of gold nanoparticles within a single crystal of lysozyme. Nat Nanotechnol. 2011;6(2):93–7.

    Article  ADS  CAS  PubMed  Google Scholar 

  135. Si D, Epstein T, Lee Y, Kopelman R. Nanoparticle PEBBLE sensors for quantitative nanomolar imaging of intracellular free calcium ions. Anal Chem. 2012;84(2):978–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Medley C, Bamrungsap S, Tan W, Smith J. Aptamer-conjugated nanoparticles for cancer cell detection. Anal Chem. 2011;83(3):727–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Lee J, Lee N, Kim H, Kim J, Choi S, Kim J, et al. Uniform mesoporous dye-doped silica nanoparticles decorated with multiple magnetite nanocrystals for simultaneous enhanced magnetic resonance imaging, fluorescence imaging, and drug delivery. J Am Chem Soc. 2010;132(2):552–7.

    Article  CAS  PubMed  Google Scholar 

  138. Elsabahy M, Wooley K. Design of polymeric nanoparticles for biomedical delivery applications. Chem Soc Rev. 2012;41(7):2545–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Yu M, Zhou C, Liu J, Hankins J, Zheng J. Luminescent gold nanoparticles with pH-dependent membrane adsorption. J Am Chem Soc. 2011;133(29):11014–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Chen C, Zhou L, Liu W, Liu W. Coumarinocoumarin-based two-photon fluorescent cysteine biosensor for targeting lysosome. Anal Chem. 2018;90(10):6138–43.

    Article  CAS  PubMed  Google Scholar 

  141. Liu L, Zhu G, Zeng W, Yi Y, Lv B, Qian J, et al. Silicon quantum dot-coated onto gold nanoparticles as an optical probe for colorimetric and fluorometric determination of cysteine. Mikrochim Acta. 2019;186(2):98.

    Article  PubMed  Google Scholar 

  142. McConnell E, Smythers A, Hicks L. Maleimide-based chemical proteomics for quantitative analysis of cysteine reactivity. J Am Soc Mass Spectr. 2020;31(8):1697–705.

    Article  CAS  Google Scholar 

  143. Zhao Y-H, Luo Y, Wang H, Guo T, Zhou H, Tan H, et al. A new fluorescent probe based on aggregation induced emission for selective and quantitative determination of copper(ii) and its further application to cysteine detection. ChemistrySelect. 2018;3(5):1521–6.

    Article  CAS  Google Scholar 

  144. Yu X, Zhang C, Zhang L, Xue Y, Li H, Wu Y. The construction of a FRET assembly by using gold nanoclusters and carbon dots and their application as a ratiometric probe for cysteine detection. Sensor Actuat B-Chem. 2018;263:327–35.

    Article  CAS  Google Scholar 

  145. Okamoto K, Sako Y. Recent advances in FRET for the study of protein interactions and dynamics. Curr Opin Struc Biol. 2017;46:16–23.

    Article  CAS  Google Scholar 

  146. Ding H, Yu S, Wei J, Xiong H. Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano. 2016;10(1):484–91.

    Article  CAS  PubMed  Google Scholar 

  147. Hola K, Zhang Y, Wang Y, Giannelis E, Zboril R, Rogach A. Carbon dots-emerging light emitters for bioimaging, cancer therapy and optoelectronics. Nano Today. 2014;9(5):590–603.

    Article  CAS  Google Scholar 

  148. Liu J, Duchesne P, Yu M, Jiang X, Ning X, Vinluan R, et al. Luminescent gold nanoparticles with size-independent emission. Angew Chem Int Ed. 2016;55(31):8894–8.

    Article  CAS  Google Scholar 

  149. Wang M, Zhang J, Zhou X, Sun H, Su X. Fluorescence sensing strategy for xanthine assay based on gold nanoclusters and nanozyme. Sens Actuators B Chem. 2022;358: 131488.

    Article  CAS  Google Scholar 

  150. Govindaraju S, Ankireddy SR, Viswanath B, Kim J, Yun K. Fluorescent gold nanoclusters for selective detection of dopamine in cerebrospinal fluid. Sci Rep. 2017;7:40298.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  151. Li Q, Zhou X, Tan L, Shang L. MOF-based surface tailoring the near-infrared luminescence property of gold nanoclusters for ratiometric fluorescence sensing of acetylcholinesterase. Sens Actuators B Chem. 2023;385: 133695.

    Article  CAS  Google Scholar 

  152. You JG, Lu CY, Krishna Kumar AS, Tseng WL. Cerium(iii)-directed assembly of glutathione-capped gold nanoclusters for sensing and imaging of alkaline phosphatase-mediated hydrolysis of adenosine triphosphate. Nanoscale. 2018;10(37):17691–8.

    Article  CAS  PubMed  Google Scholar 

  153. Feng X, Cao Y, Ding Y, Zheng H. Development and validation for the quantitative determination of xanthine oxidoreductase inhibitor topiroxostat by LC-MS/MS and its clinico-pharmacokinetic study. J Pharm Biomed Anal. 2020;189: 113470.

    Article  CAS  PubMed  Google Scholar 

  154. Yang H, Li X, Li G, Huang H, Yang W, Jiang X, et al. Accurate quantitative determination of affinity and binding kinetics for tight binding inhibition of xanthine oxidase. Biomed Pharmacother. 2021;139: 111664.

    Article  CAS  PubMed  Google Scholar 

  155. Wang J, Ni P, Chen C, Jiang Y, Zhang C, Wang B, et al. Colorimetric determination of the activity of alkaline phosphatase by exploiting the oxidase-like activity of palladium cube@CeO2 core-shell nanoparticles. Mikrochim Acta. 2020;187(2):115.

    Article  CAS  PubMed  Google Scholar 

  156. Wang S, Huang M, Hua J, Wei L, Lin S, Xiao L. Digital counting of single semiconducting polymer nanoparticles for the detection of alkaline phosphatase. Nanoscale. 2021;13(9):4946–55.

    Article  CAS  PubMed  Google Scholar 

  157. Wang XX, Wu Q, Shan Z, Huang QM. BSA-stabilized Au clusters as peroxidase mimetics for use in xanthine detection. Biosens Bioelectron. 2011;26(8):3614–9.

    Article  CAS  PubMed  Google Scholar 

  158. Jin L, Shang L, Guo S, Fang Y, Wen D, Wang L, et al. Biomolecule-stabilized Au nanoclusters as a fluorescence probe for sensitive detection of glucose. Biosens Bioelectron. 2011;26(5):1965–9.

    Article  CAS  PubMed  Google Scholar 

  159. Liu Y, Ai K, Cheng X, Huo L, Lu L. Gold-nanocluster-based fluorescent sensors for highly sensitive and selective detection of cyanide in water. Adv Funct. 2010;20(6):951–6.

    Article  CAS  Google Scholar 

  160. Liu H, Li M, Xia Y, Ren X. A Turn-on fluorescent sensor for selective and sensitive detection of alkaline phosphatase activity with gold nanoclusters based on inner filter effect. ACS Appl Mater Interfaces. 2017;9(1):120–6.

    Article  ADS  CAS  PubMed  Google Scholar 

  161. Zhang H, Xu C, Liu J, Li X, Guo L, Li X. An enzyme-activatable probe with a self-immolative linker for rapid and sensitive alkaline phosphatase detection and cell imaging through a cascade reaction. ChemComm. 2015;51(32):7031–4.

    CAS  Google Scholar 

  162. Liu S, Pang S, Na W, Su X. Near-infrared fluorescence probe for the determination of alkaline phosphatase. Biosens Bioelectron. 2014;55:249–54.

    Article  CAS  PubMed  Google Scholar 

  163. Li G, Fu H, Chen X, Gong P, Chen G, Xia L, et al. Facile and sensitive fluorescence sensing of alkaline phosphatase activity with photoluminescent carbon dots based on inner filter effect. Anal Chem. 2016;88(5):2720–6.

    Article  CAS  PubMed  Google Scholar 

  164. Chang H, Ho JA. Gold nanocluster-assisted fluorescent detection for hydrogen peroxide and cholesterol based on the inner filter effect of gold nanoparticles. Anal Chem. 2015;87(20):10362–7.

    Article  CAS  PubMed  Google Scholar 

  165. Yan X, Li H, Han X, Su X. A ratiometric fluorescent quantum dots based biosensor for organophosphorus pesticides detection by inner-filter effect. Biosens Bioelectron. 2015;74:277–83.

    Article  CAS  PubMed  Google Scholar 

  166. Kurdekar A, Chunduri L, Chelli S, Haleyurgirisetty M, Bulagonda E, Zheng J, et al. Fluorescent silver nanoparticle based highly sensitive immunoassay for early detection of HIV infection. RSC Adv. 2017;7(32):19863–77.

    Article  ADS  CAS  Google Scholar 

  167. He Q, Zhu Z, Jin L, Peng L, Guo W, Hu S. Detection of HIV-1 p24 antigen using streptavidin-biotin and gold nanoparticles based immunoassay by inductively coupled plasma mass spectrometry. J Anal At Spectrom. 2014;29(8):1477–82.

    Article  CAS  Google Scholar 

  168. Kurdekar AD, Avinash Chunduri LA, Manohar CS, Haleyurgirisetty MK, Hewlett IK, Venkataramaniah K. Streptavidin-conjugated gold nanoclusters as ultrasensitive fluorescent sensors for early diagnosis of HIV infection. Sci Adv. 2018;4(11):eaar6280.

  169. Chunduri L, Haleyurgirisetty M, Patnaik S, Bulagonda P, Kurdekar A, Liu J, et al. Development of carbon dot based microplate and microfluidic chip immunoassay for rapid and sensitive detection of HIV-1 p24 antigen. Microfluid Nanofluidics. 2016;20(12):167.

    Article  Google Scholar 

  170. Chunduri L, Kurdekar A, Haleyurgirisetty M, Bulagonda E, Kamisetti V, Hewlett I. Femtogram level sensitivity achieved by surface engineered silica nanoparticles in the early detection of hiv infection. Sci Rep. 2017;7:7149.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  171. Liu J, Du B, Zhang P, Haleyurgirisetty M, Zhao J, Ragupathy V, et al. Development of a microchip europium nanoparticle immunoassay for sensitive point-of-care HIV detection. Biosens Bioelectron. 2014;61:177–83.

    Article  PubMed  Google Scholar 

  172. Kurdekar A, Chunduri LA, Bulagonda E, Haleyurgirisetty M, Kamisetti V, Hewlett I. Comparative performance evaluation of carbon dot-based paper immunoassay on Whatman filter paper and nitrocellulose paper in the detection of HIV infection. Microfluid Nanofluidics. 2016;20(7):99.

    Article  Google Scholar 

  173. Shi WQ, Zeng LL, He RL, Han XS, Guan ZJ, Zhou M, et al. Near-unity NIR phosphorescent quantum yield from a room-temperature solvated metal nanocluster. Science. 2024;383:326–30.

    Article  ADS  CAS  PubMed  Google Scholar 

  174. Huang J, Xie C, Zhang X, Jiang Y, Li J, Fan Q, et al. Renal-clearable molecular semiconductor for second near-infrared fluorescence imaging of kidney dysfunction. Angew Chem Int Edit. 2019;58(42):15120–7.

    Article  CAS  Google Scholar 

  175. Ma H, Wang J, Zhang X-D. Near-infrared II emissive metal clusters: from atom physics to biomedicine. Coord Chem Rev. 2021;448: 214184.

    Article  CAS  Google Scholar 

  176. Liu L, Mu X, Liu H, Wang Q, Bai X, Wang J, et al. Structure, luminescence, and bioimaging of bimetallic CuAu nanoclusters. Opt Mater. 2018;86:291–7.

    Article  ADS  CAS  Google Scholar 

  177. Liu S, Zhang XD, Gu X, Ming D. Photodetectors based on two dimensional materials for biomedical application. Biosens Bioelectron. 2019;143: 111617.

    Article  CAS  PubMed  Google Scholar 

  178. Hegde M, Pai P, Shetty MG, Babitha KS. Gold nanoparticle based biosensors for rapid pathogen detection: a review. Environ Nanotechnol Monit Manag. 2022;18: 100756.

    CAS  Google Scholar 

  179. Ma Z, Wan H, Wang W, Zhang X, Uno T, Yang Q, et al. A theranostic agent for cancer therapy and imaging in the second near-infrared window. Nano Res. 2019;12:273–9.

    Article  PubMed  Google Scholar 

  180. Mu X, Wang J, Li Y, Xu F, Long W, Ouyang L, et al. Redox trimetallic nanozyme with neutral environment preference for brain injury. ACS Nano. 2019;13(2):1870–84.

    CAS  PubMed  Google Scholar 

  181. Pei J, Zhao R, Mu X, Wang J, Liu C, Zhang XD. Single-atom nanozymes for biological applications. Biomater Sci. 2020;8(23):6428–41.

    Article  CAS  PubMed  Google Scholar 

  182. Qiao Y, Liu Y, Liu H, Li Y, Long W, Wang J, et al. Fluorescence enhancement of gold nanoclusters via Zn doping for biomedical applications. RSC Adv. 2018;8(14):7396–402.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  183. Ren Q, Sun S, Zhang X-D. Redox-active nanoparticles for inflammatory bowel disease. Nano Res. 2021;14(8):2535–57.

    Article  ADS  CAS  Google Scholar 

  184. Wan H, Yue J, Zhu S, Uno T, Zhang X, Yang Q, et al. A bright organic NIR-II nanofluorophore for three-dimensional imaging into biological tissues. Nat Commun. 2018;9(1):2041–1723.

    Article  ADS  Google Scholar 

  185. Wei D, Yu Y, Huang Y, Jiang Y, Zhao Y, Nie Z, et al. A near-infrared-II polymer with tandem fluorophores demonstrates superior biodegradability for simultaneous drug tracking and treatment efficacy feedback. ACS Nano. 2021;15(3):5428–38.

    Article  CAS  PubMed  Google Scholar 

  186. Yan R, Sun S, Yang J, Long W, Wang J, Mu X, et al. nanozyme-based bandage with single-atom catalysis for brain trauma. ACS Nano. 2019;13(10):11552–60.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the National Key Research and Development Program of China (2021YFF1200700), the National Natural Science Foundation of China (Grant Nos. 91859101, 81971744, U1932107, 82001952, 11804248, 82302361, and 82302381), the Outstanding Youth Funds of Tianjin (2021FJ-0009), the National Natural Science Foundation of Tianjin (Nos. 19JCZDJC34000, 20JCYBJC00940, 21JCYBJC00550, 21JCZDJC00620, and 21JCYBJC00490), the Innovation Foundation of Tianjin University, and CAS Interdisciplinary Innovation Team (JCTD-2020-08).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Xiao Dong Zhang and Kexin Tan; investigation, Kexin Tan and Xiaoyu Mu; writing, original draft, Kexin Tan and Huizhen Ma; writing, review and editing, Kexin Tan and Huizhen Ma; formal analysis, Zhidong Wang; validation, Qi Wang and Hao Wang; supervision, Xiao Dong Zhang and Hao Wang.

Corresponding authors

Correspondence to Qi Wang, Hao Wang or Xiao-Dong Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection featuring Nanozymes with guest editors Vipul Bansal, Sudipta Seal, and Hui Wei.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, K., Ma, H., Mu, X. et al. Application of gold nanoclusters in fluorescence sensing and biological detection. Anal Bioanal Chem (2024). https://doi.org/10.1007/s00216-024-05220-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00216-024-05220-0

Keywords

Navigation