Skip to main content

Advertisement

Log in

An Introduction to Current Trends in Foodborne Pathogens and Diseases

  • Foodborne Pathogens (S Johler, Section Editor)
  • Published:
Current Clinical Microbiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This editorial review aims to provide readers with an introduction to the Current Clinical Microbiology Report Special Issue “Foodborne Pathogens” and to point out overarching novel trends and developments in this field.

Recent Findings

The first global burden of foodborne disease study by the WHO estimated that foodborne diseases annually cause illness in 1 in 10 people, resulting in 420,000 deaths per year. In recent years, the threat of foodborne antimicrobial-resistant pathogens has intensified, facing researchers and authorities with major challenges. Whole genome sequencing, MALDI-TOF mass spectrometry, and Fourier transform infrared spectroscopy enable improved detection and typing of foodborne pathogens.

Summary

Foodborne diseases remain a major risk to global health. At the same time, crucial advances in the development of technological platforms have led to unprecedented opportunities in detection, typing, and source attribution of foodborne pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Universal declaration of human rights. United Nations, Geneva. Available from http://www.un.org/en/udhrbook/pdf/udhr_booklet_en_web.pdf.

  2. •• Foodborne Disease Burden Epidemiology Reference Group 2007–2015. WHO estimates of the global burden of foodborne diseases [Internet]. WHO; 2015. Available from: http://www.who.int/foodsafety/publications/foodborne_disease/fergreport/en/. The first comprehensive effort to estimate the global burden of foodborne disease.

  3. Centers for Disease Control and Prevention (CDC). Surveillance for Foodborne Disease Outbreaks United States: Annual Report. Atlanta: CDC; 2015.

    Google Scholar 

  4. Ahmed SM, Hall AJ, Robinson AE, Verhoef L, Premkumar P, Parashar UD, et al. Global prevalence of norovirus in cases of gastroenteritis: a systematic review and meta-analysis. Lancet Infect Dis. 2014;14:725–30.

    Article  PubMed  Google Scholar 

  5. Ao TT, Feasey NA, Gordon MA, Keddy KH, Angulo FJ, Crump JA. Global burden of invasive nontyphoidal Salmonella disease, 2010 (1). Emerg Infect Dis. 2015;21:941–9.

    Article  CAS  PubMed Central  Google Scholar 

  6. Pires SM, Fischer-Walker CL, Lanata CF, Devleesschauwer B, Hall AJ, Kirk MD, et al. Aetiology-specific estimates of the global and regional incidence and mortality of diarrhoeal diseases commonly transmitted through food. Selvey LA, editor. Plos ONE. Public Libr Sci. 2015;10:e0142927.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Mogasale V, Maskery B, Ochiai RL, Lee JS, Mogasale VV, Ramani E, et al. Burden of typhoid fever in low-income and middle-income countries: a systematic, literature-based update with risk-factor adjustment. Lancet Glob Health. 2014;2:e570–80.

    Article  PubMed  Google Scholar 

  8. Khlangwiset P, Shephard GS, Wu F. Aflatoxins and growth impairment: a review. Crit Rev Toxicol Taylor & Francis. 2011;41:740–55.

    Article  CAS  PubMed  Google Scholar 

  9. Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2095–128.

    Article  PubMed  Google Scholar 

  10. Torgerson PR, Devleesschauwer B, Praet N, Speybroeck N, Willingham AL, Kasuga F, et al. World Health Organization estimates of the global and regional disease burden of 11 foodborne parasitic diseases, 2010: a data synthesis. Seidlein von L, editor. PLoS Med. Public Libr Sci. 2015;e1001920:12.

    Google Scholar 

  11. European Food Safety Authority, European Centre for Disease Prevention and Control. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2015. EFSA J. 2016;14:148.

    Google Scholar 

  12. van der Fels-Klerx HJ, Adamse P, de Jong J, Hoogenboom R, de Nijs M, Bikker P. A model for risk-based monitoring of contaminants in feed ingredients. Food Control. 2017;72:211–8.

    Article  Google Scholar 

  13. • Wall P. One Health and the food chain: maintaining safety in a globalised industry. Vet Rec. British Medical Journal Publishing Group. 2014:189–92. A well-written overview on the One-Health concept.

  14. Casey DK, Lawless JS, Wall PG. A tale of two crises: the Belgian and Irish dioxin contamination incidents. Br Food J. 2010;112:1077–91.

    Article  Google Scholar 

  15. Traceability (product tracing) in food systems: an IFT report submitted to the FDA, volume 1: technical aspects and recommendations. Comprehensive reviews in food science and food safety. Blackwell Publishing Inc. 2010;9:92–158.

  16. Gossner CM-E, Schlundt J, Ben Embarek P, Hird S, Lo-Fo-Wong D, Beltran JJO, et al. The melamine incident: implications for international food and feed safety. Environ Health Perspect. 2009;117:1803–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cawthorn D-M, Mariani S. Global trade statistics lack granularity to inform traceability and management of diverse and high-value fishes. Sci Rep. 2017;7:12852.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Marvin HJP, Bouzembrak Y, Janssen EM, van der Fels-Klerx HJ, van Asselt ED, Kleter GA. A holistic approach to food safety risks: food fraud as an example. Food Res Int. 2016;89:463–70.

    Article  PubMed  Google Scholar 

  19. Jia C, Jukes D. The national food safety control system of China—a systematic review. Food Control. 2013;32:236–45.

    Article  Google Scholar 

  20. •• World Health Organization. Critically important antimicrobials for human medicine. 2017. WHO, Geneva. Available from: http://apps.who.int/iris/bitstream/10665/255027/1/9789241512220-eng.pdf?ua=1. Flyer-style publication providing a highly condensed and current overview of antimicrobial agents of crucial relevance to human health.

  21. Walsh C, Fanning S. Antimicrobial resistance in foodborne pathogens—a cause for concern? Curr Drug Targets. 2008;9:808–15.

    Article  CAS  PubMed  Google Scholar 

  22. •• Aarestrup FM. The livestock reservoir for antimicrobial resistance: a personal view on changing patterns of risks, effects of interventions and the way forward. Philos Trans R Soc Lond Ser B Biol Sci. 2015;370:20140085–5. Comprehensive review of the use of antimicrobial agents in livestock and its impact on human health.

    Article  Google Scholar 

  23. •• Taboada EN, Graham MR, Carriço JA, Van Domselaar G. Food safety in the age of next generation sequencing, bioinformatics, and open data access. Front Microbiol Frontiers. 2017;8:909. Current overview of transformative changes to food safety brought about by next generation sequencing .

    Article  Google Scholar 

  24. Allard MW, Strain E, Melka D, Bunning K, Musser SM, Brown EW, et al. Practical value of food pathogen traceability through building a whole-genome sequencing network and database. Kraft CS, editor. J Clin Microbiol American Society for Microbiology. 2016;54:1975–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ehling-Schulz M, Svensson B, Guinebretiere M-H, Lindbäck T, Andersson M, Schulz A, et al. Emetic toxin formation of Bacillus cereus is restricted to a single evolutionary lineage of closely related strains. Microbiology Society. 2005;151:183–97.

    Article  CAS  PubMed  Google Scholar 

  26. Naumann D, Helm D, Labischinski H. Microbiological characterizations by FT-IR spectroscopy. Nature. 1991;351:81–2.

    Article  CAS  PubMed  Google Scholar 

  27. Alvarez-Ordóñez A, Mouwen DJM, López M, Prieto M. Fourier transform infrared spectroscopy as a tool to characterize molecular composition and stress response in foodborne pathogenic bacteria. J Microbiol Methods. 2011;84:369–78.

    Article  PubMed  Google Scholar 

  28. Johler S, Tichaczek-Dischinger PS, Rau J, Sihto H-M, Lehner A, Adam M, et al. Outbreak of staphylococcal food poisoning due to SEA-producing Staphylococcus aureus. Foodborne Pathogens and Disease, vol. 10. New Rochelle: Mary Ann Liebert, Inc.; 2013. p. 777–81.

    Google Scholar 

  29. Salman A, Erukhimovitch V, Talyshinsky M, Huleihil M, Huleihel M. FTIR spectroscopic method for detection of cells infected with herpes viruses. Biopolymers. Wiley Subscription Services, Inc., A Wiley Company. 2002;67:406–12.

    Article  CAS  PubMed  Google Scholar 

  30. Lee-Montiel FT, Reynolds KA, Riley MR. Detection and quantification of poliovirus infection using FTIR spectroscopy and cell culture. J Biol Eng BioMed Central. 2011;5:16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Perez-Guaita D, Andrew D, Heraud P, Beeson J, Anderson D, Richards J, et al. High resolution FTIR imaging provides automated discrimination and detection of single malaria parasite infected erythrocytes on glass. Faraday Discuss. The Royal Society of Chemistry. 2016;187:341–52.

    Article  CAS  PubMed  Google Scholar 

  32. Hornemann A, Sinning D, Cortes S, Campino L, Emmer P, Kuhls K, et al. A pilot study on fingerprinting Leishmania species from the Old World using Fourier transform infrared spectroscopy. Anal Bioanal Chem. 21st ed Springer Berlin Heidelberg. 2017;409:6907–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gómez-De-Anda F, Dorantes-Álvarez L, Gallardo-Velázquez T, Osorio-Revilla G, Calderón-Domínguez G, Martínez Labat P, et al. Determination of Trichinella spiralis in pig muscles using mid-Fourier transform infrared spectroscopy (MID-FTIR) with Attenuated Total Reflectance (ATR) and Soft Independent Modeling of Class Analogy (SIMCA). Meat Sci. 2012;91:240–6.

    Article  PubMed  Google Scholar 

  34. Croxatto A, Prod’hom G, Greub G. Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. FEMS Microbiol Rev. 2012;36:380–407.

    Article  CAS  PubMed  Google Scholar 

  35. Cobo F. Application of maldi-tof mass spectrometry in clinical virology: a review. Open Virol J. 2013;7:84–90.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Calderaro A, Arcangeletti M-C, Rodighiero I, Buttrini M, Gorrini C, Motta F, et al. Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry applied to virus identification. Sci Rep Nat Publ Group. 2014;4:6803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Murugaiyan J, Roesler U. MALDI-TOF MS profiling-advances in species identification of pests, parasites, and vectors. Front Cell Infect Microbiol. 2017;7:184.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature Nat Publ Group. 2003;422:198–207.

    Article  CAS  PubMed  Google Scholar 

  39. Østergaard C, Hansen SGK, Møller JK. Rapid first-line discrimination of methicillin resistant Staphylococcus aureus strains using MALDI-TOF MS. Int J Med Microbiol. 2015;305:838–47.

    Article  PubMed  Google Scholar 

  40. Wolters M, Rohde H, Maier T, Belmar-Campos C, Franke G, Scherpe S, et al. MALDI-TOF MS fingerprinting allows for discrimination of major methicillin-resistant Staphylococcus aureus lineages. Int J Med Microbiol. 2011;301:64–8.

    Article  CAS  PubMed  Google Scholar 

  41. Ueda O, Tanaka S, Nagasawa Z, Hanaki H, Shobuike T, Miyamoto H. Development of a novel matrix-assisted laser desorption/ionization time-of-flight mass spectrum (MALDI-TOF-MS)-based typing method to identify meticillin-resistant Staphylococcus aureus clones. J Hosp Infect. 2015;90:147–55.

    Article  CAS  PubMed  Google Scholar 

  42. Lartigue M-F. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry for bacterial strain characterization. Infect Genet Evol. 2013;13:230–5.

    Article  CAS  PubMed  Google Scholar 

  43. Stephan R, Johler S, Oesterle N, Näumann G, Vogel G, Pflüger V. Rapid and reliable species identification of scallops by MALDI-TOF mass spectrometry. Food Control. 2014;46:6–9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophia Johler.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Foodborne Pathogens

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guldimann, C., Johler, S. An Introduction to Current Trends in Foodborne Pathogens and Diseases. Curr Clin Micro Rpt 5, 83–87 (2018). https://doi.org/10.1007/s40588-018-0093-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40588-018-0093-y

Keywords

Navigation