Skip to main content
Log in

Lectin-modified piezoelectric biosensors for bacteria recognition and quantification

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The use of lectins for microorganism biosensors fabrication is proposed. Lectins are immobilised onto a gold-plated quartz crystal for direct piezoelectric label-free transduction of the bacteria–lectin binding event using an electrochemical quartz crystal microbalance (EQCM). Concanavalin A (Con A) and Escherichia coli were used for the evaluation of the lectin immobilisation method and the biosensor performance. Adsorption on nonpolarised and polarised (−0.200 V) gold-coated quartz crystals and immobilisation through avidin–biotin binding were checked for Con A surface attachment. Lectin–bacteria binding was evaluated in all cases. With a crystal modified with Con A via avidin–biotin immobilisation we obtained a linear calibration plot between 5.0 × 106 and 2.0 × 107 cfu mL−1 by measuring frequency changes with E. coli concentration 1 h after bacteria addition. A remarkable increase in sensitivity was achieved when the analytical solution contained free biotinylated Con A, as a consequence of multiple lectin adhesion to Escherichia coli cell wall, which produced an accumulation of Con A–E. coli conjugates in the form of multilayers at the electrode surface. A detection limit of approximately 1.0 × 104 cfu mL−1 was achieved. Moreover nonspecific adsorptions were minimised. Using Con A and lectin from Arachis hypogaea, different response profiles were achieved for Escherichia coli, Staphylococcus aureus and Mycobacterium phlei, thus demonstrating the feasibility of bacteria discrimination. An approach involving filtering of free and lectin-bound bacteria and introduction of a filter in the measuring cell allowed a significant frequency change to be obtained for an E. coli concentration of 1.0 × 103 cfu mL−1 in order to further increase the sensitivity and discriminate between viable and nonviable cells; an approach using electrochemical measurements of bacterial catalase activity was also checked.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ivnitski D, Abdel-Hamid I, Atanasov P, Wilkins E (1999) Biosens Bioelectron 14:599–624

    Article  CAS  Google Scholar 

  2. Palenzuela B, Simmonet BM, García RM, Ríos A, Valcárcel M (2004) Anal Chim Acta 524:167–174

    Article  CAS  Google Scholar 

  3. Cowell DC, Dowman AA, Lewis RJ, Pirzad R, Watkins SD (1994) Biosens Bioelectron 9:131–138

    Article  CAS  Google Scholar 

  4. Leonard P, Hearty S, Brennan J, Dunne L, Quinn J, Chakraborty T, O’Kennedy R (2003) Enzyme Microb Technol 32:3–13

    Article  CAS  Google Scholar 

  5. Haseley SR (2002) Anal Chim Acta 457:39–45

    Article  CAS  Google Scholar 

  6. Ertl P, Mikkelsen R (2001) Anal Chem 73:4241–4248

    Article  CAS  Google Scholar 

  7. Shen Z, Huang M, Xiao C, Zhang Y, Zeng X, Wang PG (2007) Anal Chem 79:2312–2319

    Article  CAS  Google Scholar 

  8. Calderon AM, Back G, Doyle RJ (1997) Lectin–microorganism complexes. In: The electronic journal of lectins. Lectins, biology, biochemistry, clinical biochemistry, vol 12. http://plab.ku.dk/tcbh/Lectins12/Calderon/paper.htm. Accessed 22 Apr 2008

  9. Rodahl M, Höök F, Fredriksson C, Keller CA, Krozer A, Brzezinski P, Voinova M, Kasemo B (1997) Faraday Discuss 107:229–246

    Article  CAS  Google Scholar 

  10. Kim K-H, Rand AG, Letcher SV (2003) Biosens Bioelectron 18:83–89

    Article  CAS  Google Scholar 

  11. Janshoff A, Galla H-J, Steinem C (2000) Angew Chem Int Ed 39:4004–4032

    Article  CAS  Google Scholar 

  12. Saenger W (1987) Annu Rev Biophys Biophys-Chem 16:93

    Article  CAS  Google Scholar 

  13. Edelman GM, Cunningham BA, Reeke GN Jr, Becker JW, Waxdal MJ, Wang JL (1972) Proc Nat Acad Sci 69:2580–2584

    Article  CAS  Google Scholar 

  14. Pei Z, Anderson H, Aastrup T, Ramström O (2005) Biosens Bioelectron 21:60–66

    Article  CAS  Google Scholar 

  15. Buttry DA, Bard AJ (1991) Electroanalytical chemistry, vol 17. Marcel Dekker, New York

    Google Scholar 

  16. Tu X, Xie Q, Xiang C, Zhang Y, Yao S (2005) J Phys Chem B 109:4053–4063

    Article  CAS  Google Scholar 

  17. Martin SJ, Spates JJ, Wesendorf KO, Schnneider T, Huber RJ (1997) Anal Chem 69:2050

    Article  CAS  Google Scholar 

  18. Olson MOJ, Liener IE (1967) Biochemistry 6:105

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support of the project CTQ2006-02743BQU is gratefully ackowledged. Maria Gamella acknowledges a pre-PhD fellowship of the Comunidad Autonoma de Madrid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Pingarrón.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serra, B., Gamella, M., Reviejo, A.J. et al. Lectin-modified piezoelectric biosensors for bacteria recognition and quantification. Anal Bioanal Chem 391, 1853–1860 (2008). https://doi.org/10.1007/s00216-008-2141-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2141-6

Keywords

Navigation