Skip to main content
Log in

Analysis and classification of bacteria by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and a chemometric approach

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a useful technique for the identification of bacteria on the basis of their characteristic protein mass spectrum fingerprint. Highly standardized instrumental analytical performance and bacterial culture conditions are required to achieve useful information. A chemometric approach based on multivariate analysis techniques was developed for the analysis of MALDI data of different bacteria to allow their identification from their fingerprint. Principal component analysis, linear discriminant analysis (LDA) and soft independent modelling of class analogy (SIMCA) were applied to the analysis of the MALDI MS mass spectra of two pathogenic bacteria, Escherichia coli O157:H7 and Yersinia enterocolitica, and the non-pathogenic E. coli MC1061. Spectra variability was assessed by growing bacteria in different media and analysing them at different culture growth times. After selection of the relevant variables, which allows the evaluation of an m/z value pattern with high discriminant power, the identification of bacteria by LDA and SIMCA was performed independently of the experimental conditions used. In order to better evaluate the analytical performance of the approach used, the ability to correctly classify different bacteria, six wild-type strains of E. coli O157:H7, was also studied and a combination of different chemometric techniques with a severe validation was developed. The analysis of spiked bovine meat samples and the agreement with an independent chemiluminescent enzyme immunoassay demonstrated the applicability of the method developed for the detection of bacteria in real samples. The easy automation of the MALDI method and the ability of multivariate techniques to reduce interlaboratory variability associated with bacterial growth time and conditions suggest the usefulness of the proposed MALDI MS approach for rapid routine food safety checks.

Workflow of the developed MALDI-TOF MS and chemometric approach for the analysis and classification of bacteria

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mead PS, Slutsker L, Dietz V, McCaig LF, Bresee JS, Shapiro C, Griffin PM, Tauxe RV (1999) Emerg Infect Dis 5:607–625

    Article  CAS  Google Scholar 

  2. World Health Organization (2002) Fact sheet 237: food safety and foodborne illness. World Health Organization, Geneva

    Google Scholar 

  3. Institute of Food Technologists (2004) Scientific status summary: bacteria associated with foodborne diseases. Institute of Food Technologists, Chicago

    Google Scholar 

  4. Anhalt JP, Fenselau C (1975) Anal Chem 47:219–225

    Article  CAS  Google Scholar 

  5. Snyder AP, Smith PBW, Dworzansky JP, Meuzelaar HLC (1994) ACS Symp Ser 541:62–68

    CAS  Google Scholar 

  6. Basile F, Voorhees KJ, Hadfield TL (1995) Appl Environ Microbiol 61:1534–1539

    CAS  Google Scholar 

  7. DeLuca S, Sarver EW, Harrington PdB, Voorhees KJ (1990) Anal Chem 62:1465–1472

    Article  CAS  Google Scholar 

  8. Fox A, Rosario RMT, Larsson L (1993) Appl Environ Microbiol 59:4354–4360

    CAS  Google Scholar 

  9. Heller DN, Murphy CM, Cotter RJ, Fenselau C, Uy OM (1988) Anal Chem 60:2787–2791

    Article  CAS  Google Scholar 

  10. Cole MJ, Enke CG (1991) Anal Chem 63:1032–1038

    Article  CAS  Google Scholar 

  11. Heller DN, Cotter RJ, Fenselau C, Uy OM (1987) Anal Chem 59:2806–2809

    Article  CAS  Google Scholar 

  12. Wang Z, Dunlop K, Long SR, Li L (2002) Anal Chem 74:3174–3182

    Article  CAS  Google Scholar 

  13. Fenselau C, Demirev PA (2001) Mass Spectrom Rev 20:157–171

    Article  CAS  Google Scholar 

  14. Holland RD, Rafii F, Heinze TM, Sutherland JB, Voorhees KJ, Lay JO Jr (2000) Rapid Commun Mass Spectrom 14:911–917

    Article  CAS  Google Scholar 

  15. Lay JO Jr (2001) Mass Spectrom Rev 20:172–194

    Article  CAS  Google Scholar 

  16. Demirev PA, Ho YP, Ryzhov V, Fenselau C (1999) Anal Chem 71:2732–2738

    Article  CAS  Google Scholar 

  17. Demirev PA, Lin JS, Pineda FJ, Fenselau C (2001) Anal Chem 73:4566–4573

    Article  CAS  Google Scholar 

  18. Demirev PA, Ramirez J, Fenselau C (2001) Anal Chem 73:5725–5731

    Article  CAS  Google Scholar 

  19. Dworzanski JP, Snyder AP, Chen R, Zhang H, Wishart D, Li L (2004) Anal Chem 76:2355–2366

    Article  CAS  Google Scholar 

  20. Holland RD, Wilkes JG, Rafii F, Sutherland JB, Persons CC, Voorhees KJ, Lay JO Jr (1996) Rapid Commun Mass Spectrom 10:1227–1232

    Article  CAS  Google Scholar 

  21. Krishamurthy T, Ross PL (1996) Rapid Commun Mass Spectrom 10:1992–1996

    Article  Google Scholar 

  22. Domin MA, Welham KJ, Ashton DS (1999) Rapid Commun Mass Spectrom 13:222–226

    Article  CAS  Google Scholar 

  23. Saenz AJ, Petresen CE, Valentine NB, Gantt SL, Jarman HK, Kingsley MT, Wahl KL (1999) Rapid Commun Mass Spectrom 13:1580–1585

    Article  CAS  Google Scholar 

  24. Lay JO Jr, Holland RD (2000) Methods Mol Biol 146:461–488

    CAS  Google Scholar 

  25. Wang Z, Russon L, Li L, Roser DC, Long SR (1998) Rapid Commun Mass Spectrom 12:456–464

    Article  CAS  Google Scholar 

  26. Williams TL, Andrzejewski D, Lay JO Jr, Musser SM (2003) J Am Soc Mass Spectrom 14:342–351

    Article  CAS  Google Scholar 

  27. Valentine N, Wunschel S, Wunschel D, Petersen C, Wahl K (2005) Appl Environ Microbiol 71:58–64

    Article  CAS  Google Scholar 

  28. Arnold RJ, Karty JA, Ellington DA, Reilly JP (1999) Anal Chem 71:1990–1996

    Article  CAS  Google Scholar 

  29. Wunschel SC, Jarman KH, Petersen CE, Valentine NB, Wahl KL, Schauki D, Jakman J, Nelson CP, White EV (2005) J Am Soc Mass Spectrom 16:456–462

    Article  CAS  Google Scholar 

  30. Pierce CY, Barr JR, Woolfitt AR, Moura H, Shaw EI, Thompson HA, Massung RF, Fernandez FM (2007) Anal Chim Acta 583:23–31

    Article  CAS  Google Scholar 

  31. Hsieh SY, Tseng CL, Lee YS, Kuo AJ, Sun CF, Lin YH, Chen JK (2008) Mol Cell Proteomics 7:448–456

    CAS  Google Scholar 

  32. Barman KH, Cerula ST, Saenz AJ, Petersen CE, Valentine NB, Kingsley MT, Wahl KL (2000) Anal Chem 72:1217–1223

    Article  CAS  Google Scholar 

  33. Nanni P, Parisi D, Roda G, Casale M, Belluzzi A, Lloyd M, Roda E, Roda A (2007) Rapid Commun Mass Spectrom 21:1–7

    Article  CAS  Google Scholar 

  34. Kennard RW, Stone LA (1969) Technometrics 11:137–148

    Article  Google Scholar 

  35. Magliulo M, Simoni P, Guardigli M, Michelini E, Luciani M, Lelli R, Roda A (2007) J Agric Food Chem. 2007 55:4933–4939

    Article  CAS  Google Scholar 

  36. Chandler DP, Brown J, Call DR, Wunschel S, Grate JW, Holman DA, Olson L, Stottlemyre MS, Bruckner-Lea CJ (2001) Int J Food Microbiol 70:143–154

    Article  CAS  Google Scholar 

  37. Ferretti R, Mannazzu I, Cocolin L, Comi G, Clementi F (2001) Appl Environ Microbiol 67:977–978

    Article  CAS  Google Scholar 

  38. Massart DL, Vandeginste BGM, Buydens LMC, De Jong S, Lewi PL, Smeyers-Verbeke J (1998) Handbook of chemometrics and qualimetrics: part A. Elsevier, Amsterdam

    Google Scholar 

  39. Forina M, Lanteri S, Armanino C, Oliveros MCC, Casolino C (2004) V-PARVUS 2004. http://www.parvus.unige.it

  40. Forina M (1996) Introduzione alla chimica analitica con elementi di chemiometria ECIG, Genoa

  41. Massart DL, Vandeginste BGM, Buydens LMC, De Jong S, Lewi PL, Smeyers-Verbeke J (1998) Handbook of chemometrics and qualimetrics: part B. Elsevier, Amsterdam

    Google Scholar 

  42. Forina M, Lanteri S, Casale M, Oliveros MCC (2007) Chemom Intell Lab Syst 87:252–261

    Article  CAS  Google Scholar 

  43. Forina M, Lanteri S, Oliveros MCC, Millan CP (2004) Anal Bioanal Chem 380:397−418

    Article  CAS  Google Scholar 

  44. Wold S, Sjostrom M (1997) In: Kowalski BR (ed) Chemometrics, theory and application. ACS symposium series 52. American Chemical Society, Washington

  45. Forina M, Lanteri S (1984) In: Kowalski BR (ed) Data analysis in food chemistry. Chemometrics: mathematics and statistics in chemistry. NATO ASI series C. Reidel, Dordrecht

  46. Coomans D (1982) PhD thesis, Vrije Universiteit, Brussels

Download references

Acknowledgement

This research was facilitated by access to the CIRB-CRBA Proteomic Facility Services (LaP, c/o St. Orsola University Hospital of Bologna, Italy).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aldo Roda.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM (PDF 144 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parisi, D., Magliulo, M., Nanni, P. et al. Analysis and classification of bacteria by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and a chemometric approach. Anal Bioanal Chem 391, 2127–2134 (2008). https://doi.org/10.1007/s00216-008-2161-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2161-2

Keywords

Navigation