Skip to main content
Log in

Colorimetric and visual dopamine assay based on the use of gold nanorods

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe an optical method for the determination of dopamine (DA). It is based on the use of gold nanorods (AuNRs) with an aspect ratio of 3.2 and an absorption maximum at 700 nm. The AuNRs were synthesized via a seed-mediated growth route. The addition of various DA concentrations to the aqueous AuNRs results in a color change bluish-purple to colorless. The addition of DA is accompanied by a linear decrease in absorbance, a blue-shift of the peak to 687 nm, and the formation of a new band peaking at 720 nm on increasing in the DA concentration to 100 μM. It is found that DA causes an aggregation of the AuNRs through the formation of interparticle plasmon-linkages between DA molecules and AuNRs. This was confirmed by transmission electron microscopy. This new colorimetric probe for DA shows good selectivity for DA even in the presence of potentially interfering species. Several linearranges are observed between the changes in absorption at around 687 and at around 720 nm and the DA concentration in the range between 100 nM and 10 mM. The limit of detection is 30 nM. The method was successfully employed to the determination of DA in spiked human urine samples.

Schematic of a reliable, highly selective, and sensitive method for the detection of dopamine using the localized surface plasmon resonance of bare gold nanorods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dong Y, Chen X, Li C, Chen X (2009) MEEKC with laser induced fluorescence detection of epinephrine and dopamine in TCM and in plasma of patients with rheumatic heart disease. J Lanzhou Univ (Natur Sci) 45:77–81

    CAS  Google Scholar 

  2. Gingrich JA, Caron MG (1993) Recent advances in the molecular biology of dopamine receptors. Annu Rev Neurosci 16(1):299–321

    Article  CAS  Google Scholar 

  3. Farde L (1997) Brain imaging of schizophrenia—the dopamine hypothesis. Schizophr Res 28(2–3):157–162

    Article  CAS  Google Scholar 

  4. Wightman RM, May LJ, Michael AC (1988) Detection of dopamine dynamics in the brain. Anal Chem 60(13):769A–793A

    Article  CAS  Google Scholar 

  5. Bouloux P, Perrett D, Besser G (1985) Methodological considerations in the determination of plasma catecholamines by high-performance liquid chromatography with electrochemical detection. Ann Clin Biochem: J Biochem Med 22(2):194–203

    Article  CAS  Google Scholar 

  6. Li L, Liu H, Shen Y, Zhang J, Zhu J-J (2011) Electrogenerated chemiluminescence of Au nanoclusters for the detection of dopamine. Anal Chem 83(3):661–665

    Article  CAS  Google Scholar 

  7. Olefirowicz TM, Ewing AG (1990) Dopamine concentration in the cytoplasmic compartment of single neurons determined by capillary electrophoresis. J Neurosci Methods 34(1):11–15

    Article  CAS  Google Scholar 

  8. Wu L, Feng L, Ren J, Qu X (2012) Electrochemical detection of dopamine using porphyrin-functionalized graphene. Biosens Bioelectron 34(1):57–62

    Article  Google Scholar 

  9. Pandikumar A, How GTS, See TP, Omar FS, Jayabal S, Kamali KZ, Yusoff N, Jamil A, Ramaraj R, John SA (2014) Graphene and its nanocomposite material based electrochemical sensor platform for dopamine. RSC Adv 4(108):63296–63323

    Article  CAS  Google Scholar 

  10. Su H, Sun B, Chen L, Xu Z, Ai S (2012) Colorimetric sensing of dopamine based on the aggregation of gold nanoparticles induced by copper ions. Anal Methods 4(12):3981–3986

    Article  CAS  Google Scholar 

  11. Yusoff N, Pandikumar A, Ramaraj R, Lim HN, Huang NM (2015) Gold nanoparticle based optical and electrochemical sensing of dopamine. Microchim Acta 182(13–14):2091–2114

    Article  CAS  Google Scholar 

  12. Jayabal S, Pandikumar A, Lim HN, Ramaraj R, Sun T, Huang NM (2015) A gold nanorod-based localized surface plasmon resonance platform for the detection of environmentally toxic metal ions. Analyst 140(8):2540–2555

    Article  CAS  Google Scholar 

  13. Zheng Y, Wang Y, Yang X (2011) Aptamer-based colorimetric biosensing of dopamine using unmodified gold nanoparticles. Sensors Actuators B Chem 156(1):95–99

    Article  CAS  Google Scholar 

  14. Zhang Y, Li B, Chen X (2010) Simple and sensitive detection of dopamine in the presence of high concentration of ascorbic acid using gold nanoparticles as colorimetric probes. Microchim Acta 168(1–2):107–113

    Article  CAS  Google Scholar 

  15. Kong B, Zhu A, Luo Y, Tian Y, Yu Y, Shi G (2011) Sensitive and selective colorimetric visualization of cerebral dopamine based on double molecular recognition. Angew Chem 123(8):1877–1880

    Article  Google Scholar 

  16. Chen Z, Zhang C, Zhou T, Ma H (2015) Gold nanoparticle based colorimetric probe for dopamine detection based on the interaction between dopamine and melamine. Microchim Acta 182(5–6):1003–1008

    Article  CAS  Google Scholar 

  17. Chen Z, Zhang C, Wang C (2015) A colorimetric assay of dopamine utilizing melamine modified gold nanoparticle probes. Anal Methods 7(3):838–841

    Article  CAS  Google Scholar 

  18. Yu Y-Y, Chang S-S, Lee C-L, Wang CC (1997) Gold nanorods: electrochemical synthesis and optical properties. J Phys Chem B 101(34):6661–6664

    Article  CAS  Google Scholar 

  19. N’Gom M, Li S, Schatz G, Erni R, Agarwal A, Kotov N, Norris TB (2009) Electron-beam mapping of plasmon resonances in electromagnetically interacting gold nanorods. Phys Rev B 80(11):113411

    Article  Google Scholar 

  20. Chen H, Shao L, Li Q, Wang J (2013) Gold nanorods and their plasmonic properties. Chem Soc Rev 42(7):2679–2724

    Article  CAS  Google Scholar 

  21. Thomas KG, Barazzouk S, Ipe BI, Joseph SS, Kamat PV (2004) Uniaxial plasmon coupling through longitudinal self-assembly of gold nanorods. J Phys Chem B 108(35):13066–13068

    Article  CAS  Google Scholar 

  22. Mackey MA, Ali MR, Austin LA, Near RD, El-Sayed MA (2014) The most effective gold nanorod size for plasmonic photothermal therapy: theory and in vitro experiments. J Phys Chem B 118(5):1319–1326

    Article  CAS  Google Scholar 

  23. Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15(10):1957–1962

    Article  CAS  Google Scholar 

  24. Bang NA, Thom PT, Nhat HN (2013) A comparative study of classical approaches to surface plasmon resonance of colloidal gold nanorods. Gold Bull 46(2):91–96

    Article  CAS  Google Scholar 

  25. Jayabal S, Viswanathan P, Ramaraj R (2014) Reduced graphene oxide–gold nanorod composite material stabilized in silicate sol–gel matrix for nitric oxide sensor. RSC Adv 4(63):33541–33548

    Article  CAS  Google Scholar 

  26. Feng J-J, Guo H, Li Y-F, Wang Y-H, Chen W-Y, Wang A-J (2013) Single molecular functionalized gold nanoparticles for hydrogen-bonding recognition and colorimetric detection of dopamine with high sensitivity and selectivity. ACS Appl Mater Interfaces 5(4):1226–1231

    Article  CAS  Google Scholar 

  27. Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108(2):462–493

    Article  CAS  Google Scholar 

  28. Lin Y, Chen C, Wang C, Pu F, Ren J, Qu X (2011) Silver nanoprobe for sensitive and selective colorimetric detection of dopaminevia robust Ag–catechol interaction. Chem Commun 47(4):1181–1183

    Article  CAS  Google Scholar 

  29. Kamali KZ, Pandikumar A, Sivaraman G, Lim HN, Wren SP, Sun T, Huang NM (2015) Silver@graphene oxide nanocomposite-based optical sensor platform for biomolecules. RSC Adv 5(23):17809–17816

    Article  Google Scholar 

  30. Shibu Joseph S, Ipe BI, Pramod P, Thomas KG (2006) Gold nanorods to nanochains: mechanistic investigations on their longitudinal assembly using α, ω-alkanedithiols and interplasmon coupling. J Phys Chem B 110(1):150–157

    Article  CAS  Google Scholar 

  31. Maduraiveeran G, Ramaraj R (2011) Silver nanoparticles embedded in amine-functionalized silicate sol–gel network assembly for sensing cysteine, adenosine and NADH. J Nanopart Res 13(9):4267–4276

    Article  CAS  Google Scholar 

  32. Radhakumary C, Sreenivasan K (2011) Naked eye detection of glucose in urine using glucose oxidase immobilized gold nanoparticles. Anal Chem 83(7):2829–2833

    Article  CAS  Google Scholar 

  33. Xue Y, Zhao H, Wu Z, Li X, He Y, Yuan Z (2011) Colorimetric detection of Cd 2+ using gold nanoparticles cofunctionalized with 6-mercaptonicotinic acid and l-cysteine. Analyst 136(18):3725–3730

    Article  CAS  Google Scholar 

  34. Kamali KZ, Pandikumar A, Jayabal S, Ramaraj R, Lim HN, Ong BH, Bien CSD, Kee YY, Huang NM (2016) Amalgamation based optical and colorimetric sensing of mercury (II) ions with silver@graphene oxide nanocomposite materials. Microchim Acta 183(1):369–377

    Article  Google Scholar 

  35. Liu J-M, Wang X-X, Cui M-L, Lin L-P, Jiang S-L, Jiao L, Zhang L-H (2013) A promising non-aggregation colorimetric sensor of AuNRs–Ag+ for determination of dopamine. Sensors Actuators B Chem 176:97–102

    Article  CAS  Google Scholar 

  36. Wang B, Chen Y, Wu Y, Weng B, Liu Y, Li CM (2016) Synthesis of nitrogen- and iron-containing carbon dots, and their application to colorimetric and fluorometric determination of dopamine. Microchim Acta 183(9):2491–2500

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by a University of Malaya Research Grant UMRG programme (RP007C-13AFR) and the High Impact Research Grant from the Ministry of Higher Education of Malaysia (UM.C/625/1/HIR/MOHE/05).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Perumal Rameshkumar or Nay Ming Huang.

Ethics declarations

The author(s) declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teo, P.S., Rameshkumar, P., Pandikumar, A. et al. Colorimetric and visual dopamine assay based on the use of gold nanorods. Microchim Acta 184, 4125–4132 (2017). https://doi.org/10.1007/s00604-017-2435-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2435-5

Keywords

Navigation