Skip to main content

Advertisement

Log in

Dipeptidyl peptidase-4 inhibitors in cardioprotection: a promising therapeutic approach

  • Review
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Cardiovascular diseases are major killers in all developed societies and rapidly becoming the leading cause of morbidity and mortality in the developing world. Patients with diabetes mellitus are at particular risk of developing cardiovascular diseases. The present treatment options for management of diabetes have expanded since the development of glucagon-like peptide-1 agonists and dipeptidyl peptidase-4 (DPP-4) inhibitors. There is a growing body of evidence that these agents may have cardioprotective effects even in patients who do not have diabetes. Here, we discuss this evidence as well as pathways that DPP-4 inhibitors target in the cardiovascular system. These agents over time will find an appropriate place in the management of cardiovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ADACP-2:

Adenosine deaminase complexing protein-2

AMPK:

Adenosine-monophosphate-activated protein kinase

BNP:

B-type natriuretic peptide

cGMP:

Cyclic guanosine monophosphate

CVDs:

Cardiovascular diseases

DPP-4:

Dipeptidyl peptidase-4

eNOS:

Nitric oxide synthase

G-CSF:

Granulocyte colony-stimulating factor

GIP:

Gastric inhibitory peptide

GLP-1:

Glucagon-like peptide-1

GLP-1R:

Glucagon-like peptide-1 receptor

LDLR:

Low density lipoprotein receptor

PYY:

Peptide YY

SDF-1α:

Stromal cell-derived factor-1α

TNF-α:

Tumor necrosis factor alpha

References

  1. Nicholls SJ, Tuzcu EM, Kalidindi S, Wolski K, Moon KW, Sipahi I et al (2008) Effect of diabetes on progression of coronary atherosclerosis and arterial remodeling: a pooled analysis of 5 intravascular ultrasound trials. J Am Coll Cardiol 52:255–262

    Article  PubMed  CAS  Google Scholar 

  2. Krum H, Sobotka P, Mahfoud F, Böhm M, Esler M, Schlaich M (2011) Device-based antihypertensive therapy: therapeutic modulation of the autonomic nervous system. Circulation 123:209–215

    Article  PubMed  Google Scholar 

  3. Mital S, Chung WK, Colan SD, Sleeper LA, Manlhiot C, Arrington CB et al (2011) Renin-angiotensin-aldosterone genotype influences ventricular remodeling in infants with single ventricle. Circulation 123:2353–2362

    Article  PubMed  CAS  Google Scholar 

  4. Katakami N, Kim YS, Kawamori R, Yamasaki Y et al (2010) The phosphodiesterase inhibitor cilostazol induces regression of carotid atherosclerosis in subjects with type 2 diabetes mellitus: principal results of the diabetic atherosclerosis prevention by cilostazol (DAPC) study: a randomized trial. Circulation 121:2584–2591

    Article  PubMed  CAS  Google Scholar 

  5. Farooq V, van Klaveren D, Steyerberg EW, Meliga E, Vergouwe Y, Chieffo A et al (2013) Anatomical and clinical characteristics to guide decision making between coronary artery bypass surgery and percutaneous coronary intervention for individual patients: development and validation of SYNTAX score II. Lancet 381:639–650

    Article  PubMed  Google Scholar 

  6. Hlatky MA (2012) Compelling evidence for coronary-bypass surgery in patients with diabetes. N Engl J Med 367:2437–2438

    Article  PubMed  CAS  Google Scholar 

  7. Zheng Z, Chen H, Wang H, Ke B, Zheng B, Li Q et al (2010) Improvement of retinal vascular injury in diabetic rats by statins is associated with the inhibition of mitochondrial reactive oxygen species pathway mediated by peroxisome proliferator-activated receptor gamma coactivator 1alpha. Diabetes 59:2315–2325

    Article  PubMed  CAS  Google Scholar 

  8. Roy D, Talajic M, Nattel S, Wyse DG, Dorian P, Lee KL et al (2008) Rhythm control versus rate control for atrial fibrillation and heart failure. N Engl J Med 358:2667–2677

    Article  PubMed  CAS  Google Scholar 

  9. Beca S, Ahmad F, Shen W, Liu J, Makary S, Polidovitch N et al (2013) Phosphodiesterase type 3A regulates basal myocardial contractility through interacting with sarcoplasmic reticulum calcium ATPase type 2a signaling complexes in mouse heart. Circ Res 112:289–297

    Article  PubMed  CAS  Google Scholar 

  10. Action to Control Cardiovascular Risk in Diabetes Study Group, Gerstein HC, Miller ME, Byington RP, Goff DC Jr, Bigger JT et al (2008) Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med 358:2545–2559

    Article  PubMed  CAS  Google Scholar 

  11. Mannucci E, Dicembrini I (2012) Incretin-based therapies and cardiovascular risk. Curr Med Res Opin 28:715–721

    Article  PubMed  CAS  Google Scholar 

  12. Bao W, Aravindhan K, Alsaid H, Chendrimada T, Szapacs M, Citerone DR et al (2011) Albiglutide, a long lasting glucagon-like peptide-1 analog, protects the rat heart against ischemia/reperfusion injury: evidence for improving cardiac metabolic efficiency. PLoS ONE 6:e23570

    Article  PubMed  CAS  Google Scholar 

  13. Ban K, Noyan-Ashraf MH, Hoefer J, Bolz SS, Drucker DJ, Husain M (2008) Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor-dependent and -independent pathways. Circulation 117:2340–2350

    Article  PubMed  CAS  Google Scholar 

  14. Ding L, Zhang J (2012) Glucagon-like peptide-1 activates endothelial nitric oxide synthase in human umbilical vein endothelial cells. Acta Pharmacol Sin 33:75–81

    Article  PubMed  CAS  Google Scholar 

  15. Mundil D, Cameron-Vendrig A, Husain M (2012) GLP-1 receptor agonists: a clinical perspective on cardiovascular effects. Diab Vasc Dis Res 9:95–108

    Article  PubMed  Google Scholar 

  16. Tan TM, Field BC, McCullough KA, Troke RC, Chambers ES, Salem V et al (2013) Coadministration of glucagon-like Peptide-1 during glucagon infusion in humans results in increased energy expenditure and amelioration of hyperglycemia. Diabetes 62:1131–1138

    Article  PubMed  CAS  Google Scholar 

  17. Zander M, Madsbad S, Deacon CF, Holst JJ (2006) The metabolite generated by dipeptidyl-peptidase 4 metabolism of glucagon-like peptide-1 has no influence on plasma glucose levels in patients with type 2 diabetes. Diabetologia 49:369–374

    Article  PubMed  CAS  Google Scholar 

  18. Sauvé M, Ban K, Momen MA, Zhou YQ, Henkelman RM, Husain M et al (2010) Genetic deletion or pharmacological inhibition of dipeptidyl peptidase-4 improves cardiovascular outcomes after myocardial infarction in mice. Diabetes 59:1063–1073

    Article  PubMed  Google Scholar 

  19. Ye Y, Keyes KT, Zhang C, Perez-Polo JR, Lin Y, Birnbaum Y (2010) The myocardial infarct size-limiting effect of sitagliptin is PKA-dependent, whereas the protective effect of pioglitazone is partially dependent on PKA. Am J Physiol Heart Circ Physiol 298:H1454–H1465

    Article  PubMed  CAS  Google Scholar 

  20. Huisamen B, Genis A, Marais E, Lochner A (2011) Pre-treatment with a DPP-4 inhibitor is infarct sparing in hearts from obese, pre-diabetic rats. Cardiovasc Drugs Ther 25:13–20

    Article  PubMed  CAS  Google Scholar 

  21. Byrd JB, Touzin K, Sile S, Gainer JV, Yu C, Nadeau J et al (2008) Dipeptidyl peptidase IV in angiotensin-converting enzyme inhibitor associated angioedema. Hypertension 51:141–147

    Article  PubMed  CAS  Google Scholar 

  22. Pala L, Pezzatini A, Dicembrini I, Ciani S, Gelmini S, Vannelli BG et al (2012) Different modulation of dipeptidyl peptidase-4 activity between microvascular and macrovascular human endothelial cells. Acta Diabetol 49:S59–S63

    Article  PubMed  Google Scholar 

  23. Matheeussen V, Baerts L, De Meyer G, De Keulenaer G, Van der Veken P, Augustyns K et al (2011) Expression and spatial heterogeneity of dipeptidyl peptidases in endothelial cells of conduct vessels and capillaries. Biol Chem 392:189–198

    Article  PubMed  CAS  Google Scholar 

  24. Ban K, Kim KH, Cho CK, Sauvé M, Diamandis EP, Backx PH et al (2010) Glucagon-like peptide (GLP)-1(9–36) amide-mediated cytoprotection is blocked by exendin (9–39) yet does not require the known GLP-1 receptor. Endocrinology 151:1520–1531

    Article  PubMed  CAS  Google Scholar 

  25. Nikolaidis LA, Elahi D, Hentosz T, Doverspike A, Huerbin R, Zourelias L et al (2004) Recombinant glucagon-like peptide-1 increases myocardial glucose uptake and improves left ventricular performance in conscious dogs with pacing-induced dilated cardiomyopathy. Circulation 110:955–961

    Article  PubMed  CAS  Google Scholar 

  26. Chaudhuri A, Ghanim H, Vora M, Sia CL, Korzeniewski K, Dhindsa S et al (2012) Exenatide exerts a potent antiinflammatory effect. J Clin Endocrinol Metab 97:198–207

    Article  PubMed  CAS  Google Scholar 

  27. Kim SJ, Nian C, McIntosh CH (2007) Resistin is a key mediator of glucose-dependent insulinotropic polypeptide (GIP) stimulation of lipoprotein lipase (LPL) activity in adipocytes. J Biol Chem 282:34139–34147

    Article  PubMed  CAS  Google Scholar 

  28. Nagashima M, Watanabe T, Terasaki M, Tomoyasu M, Nohtomi K, Kim-Kaneyama J et al (2011) Native incretins prevent the development of atherosclerotic lesions in apolipoprotein E knockout mice. Diabetologia 54:2649–2659

    Article  PubMed  CAS  Google Scholar 

  29. Bremholm L, Hornum M, Andersen UB, Holst JJ (2010) The effect of glucagon-like peptide-2 on arterial blood flow and cardiac parameters. Regul Pept 159:67–71

    Article  PubMed  CAS  Google Scholar 

  30. Brandt I, Lambeir AM, Ketelslegers JM, Vanderheyden M, Scharpé S, De Meester I (2006) Dipeptidyl-peptidase IV converts intact B-type natriuretic peptide into its des-SerPro form. Clin Chem 52:82–87

    Article  PubMed  CAS  Google Scholar 

  31. Moilanen AM, Rysä J, Mustonen E, Serpi R, Aro J, Tokola H et al (2011) Intramyocardial BNP gene delivery improves cardiac function through distinct context-dependent mechanisms. Circ Heart Fail 4:483–495

    Article  PubMed  CAS  Google Scholar 

  32. Mentlein R, Dahms P, Grandt D, Krüger R (1993) Proteolytic processing of neuropeptide Y and peptide YY by dipeptidyl peptidase IV. Regul Pept 49:133–144

    Article  PubMed  CAS  Google Scholar 

  33. Kuo LE, Kitlinska JB, Tilan JU, Li L, Baker SB, Johnson MD et al (2007) Neuropeptide Y acts directly in the periphery on fat tissue and mediates stress-induced obesity and metabolic syndrome. Nat Med 13:803–811

    Article  PubMed  CAS  Google Scholar 

  34. Zeng C, Wang X, Liu G, Yang C (2002) Effects of ACE inhibitor and beta-adrenergic blocker on plasma NPY and NPY receptors in aortic vascular smooth muscle cells from SHR and WKY rats. Neuropeptides 36:353–361

    Article  PubMed  CAS  Google Scholar 

  35. Zaruba MM, Theiss HD, Vallaster M, Mehl U, Brunner S, David R et al (2009) Synergy between CD26/DPP-IV inhibition and G-CSF improves cardiac function after acute myocardial infarction. Cell Stem Cell 4:313–323

    Article  PubMed  CAS  Google Scholar 

  36. Zou YR, Kottmann AH, Kuroda M, Taniuchi I, Littman DR (1998) Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 393:595–599

    Article  PubMed  CAS  Google Scholar 

  37. Fadini GP, Boscaro E, Albiero M, Menegazzo L, Frison V, de Kreutzenberg S et al (2010) The oral dipeptidyl peptidase-4 inhibitor sitagliptin increases circulating endothelial progenitor cells in patients with type 2 diabetes: possible role of stromal-derived factor-1alpha. Diabetes Care 33:1607–1609

    Article  PubMed  CAS  Google Scholar 

  38. Jackson EK, Zhang M, Liu W, Mi Z (2007) Inhibition of renal dipeptidyl peptidase IV enhances peptide YY1-36-induced potentiation of angiotensin II-mediated renal vasoconstriction in spontaneously hypertensive rats. J Pharmacol Exp Ther 323:431–437

    Article  PubMed  CAS  Google Scholar 

  39. Wang LH, Ahmad S, Benter IF, Chow A, Mizutani S, Ward PE (1991) Differential processing of substance P and neurokinin A by plasma dipeptidyl(amino)peptidase IV, aminopeptidase M and angiotensin converting enzyme. Peptides 12:1357–1364

    Article  PubMed  CAS  Google Scholar 

  40. Theiss HD, Vallaster M, Rischpler C, Krieg L, Zaruba MM, Brunner S et al (2011) Dual stem cell therapy after myocardial infarction acts specifically by enhanced homing via the SDF-1/CXCR4 axis. Stem Cell Res 7:244–255

    Article  PubMed  CAS  Google Scholar 

  41. Theiss HD, Brenner C, Engelmann MG, Zaruba MM, Huber B, Henschel V et al (2010) Safety and efficacy of SITAgliptin plus GRanulocyte-colony-stimulating factor in patients suffering from Acute Myocardial Infarction (SITAGRAMI-Trial)–rationale, design and first interim analysis. Int J Cardiol 145:282–284

    Article  PubMed  Google Scholar 

  42. Fadini GP, Avogaro A (2013) Dipeptidyl peptidase-4 inhibition and vascular repair by mobilization of endogenous stem cells in diabetes and beyond. Atherosclerosis 18

  43. Albiero M, Avogaro A, Fadini GP (2013) Restoring stem cell mobilization to promote vascular repair in diabetes. Vascul Pharmacol 58:253–258

    Article  PubMed  CAS  Google Scholar 

  44. Fadini GP, Albiero M, Seeger F, Poncina N, Menegazzo L, Angelini A et al (2013) Stem cell compartmentalization in diabetes and high cardiovascular risk reveals the role of DPP-4 in diabetic stem cell mobilopathy. Basic Res Cardiol 108:313

    Article  PubMed  Google Scholar 

  45. Fadini GP, Albiero M, de Kreutzenberg SV, Boscaro E, Cappellari R, Marescotti M et al (2013) Diabetes impairs stem cell and proangiogenic cell mobilization in humans. Diabetes Care 36:943–949

    Article  PubMed  Google Scholar 

  46. Shah Z, Kampfrath T, Deiuliis JA, Zhong J, Pineda C, Ying Z et al (2011) Long-term dipeptidyl-peptidase 4 inhibition reduces atherosclerosis and inflammation via effects on monocyte recruitment and chemotaxis. Circulation 124:2338–2349

    Article  PubMed  CAS  Google Scholar 

  47. Ervinna N, Mita T, Yasunari E, Azuma K, Tanaka R, Fujimura S et al (2013) Anagliptin, a DPP-4 inhibitor, suppresses proliferation of vascular smooth muscles and monocyte inflammatory reaction and attenuates atherosclerosis in male apo E-deficient mice. Endocrinology 154:1260–1270

    Article  PubMed  CAS  Google Scholar 

  48. Farr S, Adeli K (2012) Incretin-based therapies for treatment of postprandial dyslipidemia in insulin-resistant states. Curr Opin Lipidol 23:56–61

    Article  PubMed  CAS  Google Scholar 

  49. Tremblay AJ, Lamarche B, Deacon CF, Weisnagel SJ, Couture P (2011) Effect of sitagliptin therapy on postprandial lipoprotein levels in patients with type 2 diabetes. Diabetes Obes Metab 13:366–373

    Article  PubMed  CAS  Google Scholar 

  50. Matikainen N, Mänttäri S, Schweizer A, Ulvestad A, Mills D, Dunning BE et al (2006) Vildagliptin therapy reduces postprandial intestinal triglyceride-rich lipoprotein particles in patients with type 2 diabetes. Diabetologia 49:2049–2057

    Article  PubMed  CAS  Google Scholar 

  51. Eliasson B, Möller-Goede D, Eeg-Olofsson K, Wilson C, Cederholm J, Fleck P et al (2012) Lowering of postprandial lipids in individuals with type 2 diabetes treated with alogliptin and/or pioglitazone: a randomised double-blind placebo-controlled study. Diabetologia 55:915–925

    Article  PubMed  CAS  Google Scholar 

  52. Ta NN, Schuyler CA, Li Y, Lopes-Virella MF, Huang Y (2011) DPP-4 (CD26) inhibitor alogliptin inhibits atherosclerosis in diabetic apolipoprotein E-deficient mice. J Cardiovasc Pharmacol 58:157–166

    Article  PubMed  CAS  Google Scholar 

  53. Hattori S (2011) Sitagliptin reduces albuminuria in patients with type 2 diabetes. Endocr J 58:69–73

    Article  PubMed  CAS  Google Scholar 

  54. Makdissi A, Ghanim H, Vora M, Green K, Abuaysheh S, Chaudhuri A et al (2011) Sitagliptin exerts an antiinflammatory action. J Clin Endocrinol Metab 97:3333–3341

    Article  Google Scholar 

  55. Satoh-Asahara N, Sasaki Y, Wada H, Tochiya M, Iguchi A, Nakagawachi R et al (2013) A dipeptidyl peptidase-4 inhibitor, sitagliptin, exerts anti-inflammatory effects in type 2 diabetic patients. Metabolism 62:347–351

    Article  PubMed  CAS  Google Scholar 

  56. Mason RP, Jacob RF, Kubant R, Ciszewski A, Corbalan JJ, Malinski T (2012) Dipeptidyl peptidase-4 inhibition with saxagliptin enhanced nitric oxide release and reduced blood pressure and sICAM-1 levels in hypertensive rats. J Cardiovasc Pharmacol 60:467–473

    Article  PubMed  CAS  Google Scholar 

  57. Liu L, Liu J, Wong WT, Tian XY, Lau CW, Wang YX et al (2012) Dipeptidyl peptidase 4 inhibitor sitagliptin protects endothelial function in hypertension through a glucagon-like peptide 1-dependent mechanism. Hypertension 60:833–841

    Article  PubMed  CAS  Google Scholar 

  58. Ferreira L, Teixeira-de-Lemos E, Pinto F, Parada B, Mega C, Vala H et al (2010) Effects of sitagliptin treatment on dysmetabolism, inflammation, and oxidative stress in an animal model of type 2 diabetes (ZDF rat). Mediators Inflamm 2010:592760

    Article  PubMed  Google Scholar 

  59. Pacheco BP, Crajoinas RO, Couto GK, Davel AP, Lessa LM, Rossoni LV et al (2011) Dipeptidyl peptidase IV inhibition attenuates blood pressure rising in young spontaneously hypertensive rats. J Hypertens 29:520–528

    Article  PubMed  CAS  Google Scholar 

  60. Mistry GC, Maes AL, Lasseter KC, Davies MJ, Gottesdiener KM, Wagner JA et al (2008) Effect of sitagliptin, a dipeptidyl peptidase-4 inhibitor, on blood pressure in nondiabetic patients with mild to moderate hypertension. J Clin Pharmacol 48:592–598

    Article  PubMed  CAS  Google Scholar 

  61. Ogawa S, Ishiki M, Nako K, Okamura M, Senda M, Mori T et al (2011) Sitagliptin, a dipeptidyl peptidase-4 inhibitor, decreases systolic blood pressure in Japanese hypertensive patients with type 2 diabetes. Tohoku J Exp Med 223:133–135

    Article  PubMed  CAS  Google Scholar 

  62. Fadini GP, de Kreutzenberg SV, Gjini R, Avogaro A (2011) The metabolic syndrome influences the response to incretin-based therapies. Acta Diabetol 48:219–225

    Article  PubMed  CAS  Google Scholar 

  63. Rieg T, Gerasimova M, Murray F, Masuda T, Tang T, Rose M et al (2011) Natriuretic effect by exendin-4, but not the DPP-4 inhibitor alogliptin, is mediated via the GLP-1 receptor and preserved in obese type 2 diabetic mice. Am J Physiol Renal Physiol 303:F963–F971

    Article  Google Scholar 

  64. Gomez N, Touihri K, Matheeussen V, Da Costa AM, Mahmoudabady M, Mathieu M et al (2012) Dipeptidyl peptidase IV inhibition improves cardiorenal function in overpacing-induced heart failure. Eur J Heart Fail 14:14–21

    Article  PubMed  CAS  Google Scholar 

  65. Lenski M, Kazakov A, Marx N, Böhm M, Laufs U (2011) Effects of DPP-4 inhibition on cardiac metabolism and function in mice. J Mol Cell Cardiol 51:906–918

    Article  PubMed  CAS  Google Scholar 

  66. Fadini GP, Avogaro A (2011) Cardiovascular effects of DPP-4 inhibition: beyond GLP-1. Vascul Pharmacol 55:10–16

    Article  PubMed  CAS  Google Scholar 

  67. Yin M, Silljé HH, Meissner M, van Gilst WH, de Boer RA (2011) Early and late effects of the DPP-4 inhibitor vildagliptin in a rat model of post-myocardial infarction heart failure. Cardiovasc Diabetol 10:85

    Article  PubMed  CAS  Google Scholar 

  68. Rosenstock J, Brazg R, Andryuk PJ, Lu K, Stein P, Sitagliptin Study 019 Group (2006) Efficacy and safety of the dipeptidyl peptidase-4 inhibitor sitagliptin added to ongoing pioglitazone therapy in patients with type 2 diabetes: a 24-week, multicenter, randomized, double-blind, placebo-controlled, parallel-group study. Clin Ther 28:1556–1568

    Article  PubMed  CAS  Google Scholar 

  69. Scheen AJ, Charpentier G, Ostgren CJ, Hellqvist A, Gause-Nilsson I (2010) Efficacy and safety of saxagliptin in combination with metformin compared with sitagliptin in combination with metformin in adult patients with type 2 diabetes mellitus. Diabetes Metab Res Rev 26:540–549

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by funds from the Department of Veterans Affairs.

Conflict of interest

The authors declare that there is no duality of interest associated with this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jawahar L. Mehta.

Additional information

Communicated by Massimo Federici.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dai, Y., Dai, D., Mercanti, F. et al. Dipeptidyl peptidase-4 inhibitors in cardioprotection: a promising therapeutic approach. Acta Diabetol 50, 827–835 (2013). https://doi.org/10.1007/s00592-013-0496-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-013-0496-4

Keywords

Navigation