Skip to main content

Advertisement

Log in

Dipeptidyl peptidase-4 inhibitors as new tools for cardioprotection

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Previous studies have demonstrated that individuals with type 2 diabetes mellitus (T2DM) have a two- to fourfold propensity to develop cardiovascular disease (CVD) than nondiabetic population, making CVD a major cause of death and disability among people with T2DM. The present treatment options for management of diabetes propose the earlier and more frequent use of new antidiabetic drugs that could control hyperglycaemia and reduce the risk of cardiovascular events. Findings from basic and clinical studies pointed out DPP-4 inhibitors as potentially novel pharmacological tools for cardioprotection. There is a growing body of evidence suggesting that these drugs have ability to protect the heart against acute ischaemia-reperfusion injury as well as reduce the size of infarction. Consequently, the prevention of degradation of the incretin hormones by the use of DPP-4 inhibitors represents a new strategy in the treatment of patients with T2DM and reduction of CV events in these patients. Here, we discuss the cardioprotective effects of DPP-4 inhibitors as well as proposed pathways that these hypoglycaemic agents target in the cardiovascular system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. De Rosa S, Arcidiacono B, Chiefari E, Brunetti A, Indolfi C, Foti DP (2018) Type 2 diabetes mellitus and cardiovascular disease: genetic and epigenetic links. Front Endocrinol (Lausanne) 9:2. https://doi.org/10.3389/fendo.2018.00002

    Article  Google Scholar 

  2. Rawshani A, Rawshani A, Franzén S, Eliasson B, Svensson AM, Miftaraj M, McGuire DK, Sattar N, Rosengren A, Gudbjörnsdottir S (2017) Mortality and cardiovascular disease in type 1 and type 2 diabetes. N Engl J Med 376:1407–1418. https://doi.org/10.1056/NEJMoa1608664

    Article  PubMed  Google Scholar 

  3. World Health Organization (2016) Global Report on Diabetes. http://apps.who.int/iris/bitstream/10665/204871/1/9789241565257_eng.pdf. Accessed 10 May 2019

  4. International Diabetes Federation (2013) IDF Diabetes Atlas 6th Edition. https://www.idf.org/component/attachments/attachments.html?id=813&task=download. Accessed 10 May 2019

  5. Khalse M, Bhargava A (2018) A review on cardiovascular outcome studies of dipeptidyl peptidase-4 inhibitors. Indian J Endocrinol Metab 22:689–695. https://doi.org/10.4103/ijem.IJEM_104_18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kannel WB, McGee DL (1979) Diabetes and cardiovascular disease: the Framingham study. Jama 241:2035–2038

    Article  CAS  PubMed  Google Scholar 

  7. International Diabetes Federation (2016) Diabetes and cardiovascular disease. https://www.google.rs/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwiRs_KBu4fkAhXNKFAKHbXZBBUQFjAAegQIABAC&url=https%3A%2F%2Fwww.idf.org%2Fcomponent%2Fattachments%2Fattachments.html%3Fid%3D408%26task%3Ddownload&usg=AOvVaw35LC4FxMweaZE5Uhy-w7E-. Accessed 10 May 2019

  8. Singh GM, Danaei G, Farzadfar F, Stevens GA, Woodward M, Wormser D, Kaptoge S, Whitlock G, Qiao Q, Lewington S, Di Angelantonio E, Vander Hoorn S, Lawes CM, Ali MK, Mozaffarian D, Ezzati M (2013) The age-specific quantitative effects of metabolic risk factors on cardiovascular diseases and diabetes: a pooled analysis. PLoS One 8:e65174. https://doi.org/10.1371/journal.pone.0065174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Abdul-Ghani M, DeFronzo RA, Del Prato S, Chilton R, Singh R, Ryder RE (2017) Cardiovascular disease and type 2 diabetes: has the dawn of a new era arrived? Diabetes Care 40:813–820. https://doi.org/10.2337/dc16-2736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Einarson TR, Acs A, Ludwig C, Panton UH (2018) Prevalence of cardiovascular disease in type 2 diabetes: a systematic literature review of scientific evidence from across the world in 2007-2017. Cardiovasc Diabetol 17:83. https://doi.org/10.1186/s12933-018-0728-6

    Article  PubMed  PubMed Central  Google Scholar 

  11. Deedwania P, Acharya T (2019) Cardiovascular protection with anti-hyperglycemic agents. Am J Cardiovasc Drugs 19:249–257. https://doi.org/10.1007/s40256-019-00325-9

    Article  CAS  PubMed  Google Scholar 

  12. Hayward RA, Reaven PD, Wiitala WL, Bahn GD, Reda DJ, Ge L, McCarren M, Duckworth WC, Emanuele NV (2015) Follow-up of glycemic control and cardiovascular outcomes in type 2 diabetes. N Engl J Med 372:2197–2206. https://doi.org/10.1056/NEJMoa1414266

    Article  CAS  PubMed  Google Scholar 

  13. Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HA (2008) 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med 359:1577–1589. https://doi.org/10.1056/NEJMoa0806470

    Article  CAS  PubMed  Google Scholar 

  14. Mudaliar S, Henry RR (2010) Effects of incretin hormones on beta-cell mass and function, body weight, and hepatic and myocardial function. Am J Med 123:S19–S27. https://doi.org/10.1016/j.amjmed.2009.12.006

    Article  CAS  PubMed  Google Scholar 

  15. Lago RM, Singh PP, Nesto RW (2007) Congestive heart failure and cardiovascular death in patients with prediabetes and type 2 diabetes given thiazolidinediones: a meta-analysis of randomised clinical trials. Lancet 370:1129–1136. https://doi.org/10.1016/S0140-6736(07)61514-1

    Article  CAS  PubMed  Google Scholar 

  16. Home PD, Pocock SJ, Beck-Nielsen H, Gomis R, Hanefeld M, Jones NP, Komajda M, McMurray JJ (2007) Rosiglitazone evaluated for cardiovascular outcomes—an interim analysis. N Engl J Med 357:28–38. https://doi.org/10.1056/NEJMoa073394

    Article  CAS  PubMed  Google Scholar 

  17. Nissen SE, Wolski K (2007) Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med 356:2457–2471. https://doi.org/10.1056/NEJMoa072761

    Article  CAS  PubMed  Google Scholar 

  18. Evans JM, Ogston SA, Emslie-Smith A, Morris AD (2006) Risk of mortality and adverse cardiovascular outcomes in type 2 diabetes: a comparison of patients treated with sulfonylureas and metformin. Diabetologia 49:930–936. https://doi.org/10.1007/s00125-006-0176-9

    Article  CAS  PubMed  Google Scholar 

  19. Pantalone KM, Kattan MW, Yu C, Wells BJ, Arrigain S, Jain A, Atreja A, Zimmerman RS (2012) Increase in overall mortality risk in patients with type 2 diabetes receiving glipizide, glyburide or glimepiride monotherapy versus metformin: a retrospective analysis. Diabetes Obes Metab 14:803–809. https://doi.org/10.1111/j.1463-1326.2012.01604.x

    Article  CAS  PubMed  Google Scholar 

  20. McCormick LM, Kydd AC, Read PA, Ring LS, Bond SJ, Hoole SP, Dutka DP (2014) Chronic dipeptidyl peptidase-4 inhibition with sitagliptin is associated with sustained protection against ischemic left ventricular dysfunction in a pilot study of patients with type 2 diabetes mellitus and coronary artery disease. Circ Cardiovasc Imaging 7:274–281. https://doi.org/10.1161/CIRCIMAGING.113.000785

    Article  PubMed  Google Scholar 

  21. McIntosh CH, Demuth HU, Pospisilik JA, Pederson R (2005) Dipeptidyl peptidase IV inhibitors: how do they work as new antidiabetic agents? Regul Pept 128:159–165. https://doi.org/10.1016/j.regpep.2004.06.001

    Article  CAS  PubMed  Google Scholar 

  22. Demuth HU, McIntosh CH, Pederson RA (2005) Type 2 diabetes—therapy with dipeptidyl peptidase IV inhibitors. Biochim Biophys Acta 1751:33–44. https://doi.org/10.1016/j.bbapap.2005.05.010

    Article  CAS  PubMed  Google Scholar 

  23. Anz D, Kruger S, Haubner S, Rapp M, Bourquin C, Endres S (2014) The dipeptidyl peptidase-IV inhibitors sitagliptin, vildagliptin and saxagliptin do not impair innate and adaptive immune responses. Diabetes Obes Metab 16:569–572. https://doi.org/10.1111/dom.12246

    Article  CAS  PubMed  Google Scholar 

  24. Green BD, Flatt PR, Bailey CJ (2006) Dipeptidyl peptidase IV (DPP IV) inhibitors: a newly emerging drug class for the treatment of type 2 diabetes. Diab Vasc Dis Res 3:159–165. https://doi.org/10.3132/dvdr.2006.024

    Article  PubMed  Google Scholar 

  25. Dai Y, Dai D, Mercanti F, Ding Z, Wang X, Mehta JL (2013) Dipeptidyl peptidase-4 inhibitors in cardioprotection: a promising therapeutic approach. Acta Diabetol 50:827–835. https://doi.org/10.1007/s00592-013-0496-4

    Article  CAS  PubMed  Google Scholar 

  26. Drucker DJ (2003) Enhancing incretin action for the treatment of type 2 diabetes. Diabetes Care 26:2929–2940. https://doi.org/10.2337/diacare.26.10.2929

    Article  CAS  PubMed  Google Scholar 

  27. Cavalot F, Petrelli A, Traversa M, Bonomo K, Fiora E, Conti M, Anfossi G, Costa G, Trovati M (2006) Postprandial blood glucose is a stronger predictor of cardiovascular events than fasting blood glucose in type 2 diabetes mellitus, particularly in women: lessons from the San Luigi Gonzaga Diabetes Study. J Clin Endocrinol Metab 91:813–819. https://doi.org/10.1210/jc.2005-1005

    Article  CAS  PubMed  Google Scholar 

  28. Deacon CF (2011) Dipeptidyl peptidase-4 inhibitors in the treatment of type 2 diabetes: a comparative review. Diabetes Obes Metab 13:7–18. https://doi.org/10.1111/j.1463-1326.2010.01306.x

    Article  CAS  PubMed  Google Scholar 

  29. Rizzo M, Rizvi AA, Spinas GA, Rini GB, Berneis K (2009) Glucose lowering and anti-atherogenic effects of incretin-based therapies: GLP-1 analogues and DPP-4-inhibitors. Expert Opin Investig Drugs 18:1495–1503. https://doi.org/10.1517/14728220903241633

    Article  CAS  PubMed  Google Scholar 

  30. Yousefzadeh P, Wang X (2013) The effects of dipeptidyl peptidase-4 inhibitors on cardiovascular disease risks in type 2 diabetes mellitus. J Diabetes Res 2013:459821–459826. https://doi.org/10.1155/2013/459821

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kubota A, Takano H, Wang H, Hasegawa H, Tadokoro H, Hirose M, Kobara Y, Yamada-Inagawa T, Komuro I, Kobayashi Y (2016) DPP-4 inhibition has beneficial effects on the heart after myocardial infarction. J Mol Cell Cardiol 91:72–80. https://doi.org/10.1016/j.yjmcc.2015.12.026

    Article  CAS  PubMed  Google Scholar 

  32. Haghikia A, Ricke-Hoch M, Stapel B, Gorst I, Hilfiker-Kleiner D (2014) STAT3, a key regulator of cell-to-cell communication in the heart. Cardiovasc Res 102:281–289. https://doi.org/10.1093/cvr/cvu034

    Article  CAS  PubMed  Google Scholar 

  33. Salles TA, dos Santos L, Barauna VG, Girardi AC (2015) Potential role of dipeptidyl peptidase IV in the pathophysiology of heart failure. Int J Mol Sci 16:4226–4249. https://doi.org/10.3390/ijms16024226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shigeta T, Aoyama M, Bando YK, Monji A, Mitsui T, Takatsu M, Cheng XW, Okumura T, Hirashiki A, Nagata K, Murohara T (2012) Dipeptidyl peptidase-4 modulates left ventricular dysfunction in chronic heart failure via angiogenesis-dependent and -independent actions. Circulation 126:1838–1851. https://doi.org/10.1161/CIRCULATIONAHA.112.096479

    Article  CAS  PubMed  Google Scholar 

  35. Zaruba MM, Theiss HD, Vallaster M, Mehl U, Brunner S, David R, Fischer R, Krieg L, Hirsch E, Huber B, Nathan P (2009) Synergy between CD26/DPP-IV inhibition and G-CSF improves cardiac function after acute myocardial infarction. Cell Stem Cell 4:313–323. https://doi.org/10.1016/j.stem.2009.02.013

    Article  CAS  PubMed  Google Scholar 

  36. Ledwidge M, Gallagher J, Conlon C, Tallon E, O’Connell E, Dawkins I, Watson C, O’Hanlon R, Bermingham M, Patle A, Badabhagni MR (2013) Natriuretic peptide-based screening and collaborative care for heart failure: the stop-HF randomized trial. JAMA 310:66–74. https://doi.org/10.1001/jama.2013.7588

    Article  CAS  PubMed  Google Scholar 

  37. Hawkridge AM, Heublein DM, Bergen HR 3rd, Cataliotti A, Burnett JC, Muddiman DC (2005) Quantitative mass spectral evidence for the absence of circulating brain natriuretic peptide (BNP-32) in severe human heart failure. Proc Natl Acad Sci U S A 102:17442–17447. https://doi.org/10.1073/pnas.0508782102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gomez N, Touihri K, Matheeussen V, da Costa AM, Mahmoudabady M, Mathieu M, Baerts L, Peace A, Lybaert P, Scharpé S, de Meester I, Bartunek J, Vanderheyden M, McEntee K (2012) Dipeptidyl peptidase IV inhibition improves cardiorenal function in overpacing-induced heart failure. Eur J Heart Fail 14:14–21. https://doi.org/10.1093/eurjhf/hfr146

    Article  CAS  PubMed  Google Scholar 

  39. dos Santos L, Salles TA, Arruda-Junior DF, Campos LC, Pereira AC, Barreto AL, Antonio EL, Mansur AJ, Tucci PJ, Krieger JE, Girardi AC (2013) Circulating dipeptidyl peptidase IV activity correlates with cardiac dysfunction in human and experimental heart failure. Circ Heart Fail 6:1029–1038. https://doi.org/10.1161/CIRCHEARTFAILURE.112.000057

    Article  CAS  PubMed  Google Scholar 

  40. Dehlin HM, Levick SP (2014) Substance P in heart failure: the good and the bad. Int J Cardiol 170:270–277. https://doi.org/10.1016/j.ijcard.2013.11.010

    Article  PubMed  Google Scholar 

  41. Koska J, Sands M, Burciu C, Reaven P (2015) Cardiovascular effects of dipeptidyl peptidase-4 inhibitors in patients with type 2 diabetes. Diab Vasc Dis Res 12:154–163. https://doi.org/10.1177/1479164114562411

    Article  CAS  PubMed  Google Scholar 

  42. Hausenloy DJ, Whittington HJ, Wynne AM, Begum SS, Theodorou L, Riksen N, Mocanu MM, Yellon DM (2013) Dipeptidyl peptidase-4 inhibitors and GLP-1 reduce myocardial infarct size in a glucose-dependent manner. Cardiovasc Diabetol 12:154. https://doi.org/10.1186/1475-2840-12-154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhong J, Gong Q, Goud A, Srinivasamaharaj S, Rajagopalan S (2015) Recent advances in dipeptidyl-peptidase-4 inhibition therapy: lessons from the bench and clinical trials. J Diabetes Res 2015:606031–606014. https://doi.org/10.1155/2015/606031

    Article  PubMed  PubMed Central  Google Scholar 

  44. Inzucchi SE, McGuire DK (2008) New drugs for the treatment of diabetes: part II: incretin-based therapy and beyond. Circulation. 117(4):574–584. https://doi.org/10.1161/CIRCULATIONAHA.107.735795

    Article  PubMed  Google Scholar 

  45. Ye Y, Keyes KT, Zhang C, Perez-Polo JR, Lin Y, Birnbaum Y (2010) The myocardial infarct size-limiting effect of sitagliptin is PKA-dependent, whereas the protective effect of pioglitazone is partially dependent on PKA. Am J Physiol Heart Circ Physiol 298:H1454–H1465. https://doi.org/10.1152/ajpheart.00867.2009

    Article  CAS  PubMed  Google Scholar 

  46. Ussher JR, Drucker DJ (2012) Cardiovascular biology of the incretin system. Endocr Rev 33:187–215. https://doi.org/10.1210/er.2011-1052

    Article  CAS  PubMed  Google Scholar 

  47. Mori Y, Matsui T, Hirano T, Yamagishi SI (2020) GIP as a potential therapeutic target for atherosclerotic cardiovascular disease-a systematic review. Int J Mol Sci 21:1509. https://doi.org/10.3390/ijms21041509

    Article  CAS  PubMed Central  Google Scholar 

  48. Ban K, Noyan-Ashraf MH, Hoefer J, Bolz SS, Drucker DJ, Husain M (2008) Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor-dependent and -independent pathways [published correction appears in circulation. 2008;118:e81]. Circulation 117:2340–2350. https://doi.org/10.1161/CIRCULATIONAHA.107.739938

    Article  CAS  PubMed  Google Scholar 

  49. Chang G, Zhang P, Ye L, Lu K, Wang Y, Duan Q, Zheng A, Qin S, Zhang D (2013) Protective effects of sitagliptin on myocardial injury and cardiac function in an ischemia/reperfusion rat model [published correction appears in Eur J Pharmacol. 2020;869:172876]. Eur J Pharmacol 718:105–113. https://doi.org/10.1016/j.ejphar.2013.09.007

    Article  CAS  PubMed  Google Scholar 

  50. Miki T, Yuda S, Kouzu H, Miura T (2013) Diabetic cardiomyopathy: pathophysiology and clinical features. Heart Fail Rev 18:149–166. https://doi.org/10.1007/s10741-012-9313-3

    Article  PubMed  Google Scholar 

  51. Echtay KS, Roussel D, St-Pierre J, Jekabsons MB, Cadenas S, Stuart JA, Harper JA, Roebuck SJ, Morrison A, Pickering S, Clapham JC (2002) Superoxide activates mitochondrial uncoupling proteins. Nature 415:96–99. https://doi.org/10.1038/415096a

    Article  CAS  PubMed  Google Scholar 

  52. Seferović PM, Paulus WJ (2015) Clinical diabetic cardiomyopathy: a two-faced disease with restrictive and dilated phenotypes. Eur Heart J 36:1718–1727. https://doi.org/10.1093/eurheartj/ehv134

    Article  PubMed  Google Scholar 

  53. Montaigne D, Marechal X, Coisne A, Debry N, Modine T, Fayad G, Potelle C, El Arid JM, Mouton S, Sebti Y, Duez H (2014) Myocardial contractile dysfunction is associated with impaired mitochondrial function and dynamics in type 2 diabetic but not in obese patients. Circulation 130:554–564. https://doi.org/10.1161/CIRCULATIONAHA.113.008476

    Article  CAS  PubMed  Google Scholar 

  54. Moncada S (2010) Mitochondria as pharmacological targets. Br J Pharmacol 160:217–219. https://doi.org/10.1111/j.1476-5381.2010.00706.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kalogeris T, Bao Y, Korthuis RJ (2014) Mitochondrial reactive oxygen species: a double edged sword in ischemia/reperfusion vs preconditioning. Redox Biol 2:702–714. https://doi.org/10.1016/j.redox.2014.05.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Al-Rasheed NM, Al-Rasheed NM, Hasan IH, Al-Amin MA, Al-Ajmi HN, Mahmoud AM (2016) Sitagliptin attenuates cardiomyopathy by modulating the JAK/STAT signaling pathway in experimental diabetic rats. Drug Des Devel Ther 10:2095–2107. https://doi.org/10.2147/DDDT.S109287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chinda K, Palee S, Surinkaew S, Phornphutkul M, Chattipakorn S, Chattipakorn N (2013) Cardioprotective effect of dipeptidyl peptidase-4 inhibitor during ischemia-reperfusion injury. Int J Cardiol 167:451–457. https://doi.org/10.1016/j.ijcard.2012.01.011

    Article  PubMed  Google Scholar 

  58. Basañez G, Soane L, Hardwick JM (2012) A new view of the lethal apoptotic pore. PLoS Biol 10:e1001399. https://doi.org/10.1371/journal.pbio.1001399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang MT, Lin SC, Tang PL, Hung WT, Cheng CC, Yang JS, Chang HT, Liu CP, Mar GY, Huang WC (2017) The impact of DPP-4 inhibitors on long-term survival among diabetic patients after first acute myocardial infarction. Cardiovasc Diabetol 16:89. https://doi.org/10.1186/s12933-017-0572-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Seo MS, Li H, An JR, Jung ID, Jung WK, Ha KS, Han ET, Hong SH, Choi IW, Park WS (2019) Vildagliptin, an anti-diabetic drug of the DPP-4 inhibitor, induces vasodilation via Kv channel and SERCA pump activation in aortic smooth muscle. Cardiovasc Toxicol 19:244–254. https://doi.org/10.1007/s12012-018-9496-5

    Article  CAS  PubMed  Google Scholar 

  61. Jung HS, Seo MS, An JR, Kang M, Heo R, Li H, Jung WK, Choi IW, Cho EH, Park H, Bae YM (2020) The vasodilatory effect of gemigliptin via activation of voltage-dependent K+ channels and SERCA pumps in aortic smooth muscle [published online ahead of print, 2020 Jun 12]. Eur J Pharmacol 882:173243. https://doi.org/10.1016/j.ejphar.2020.173243

    Article  CAS  PubMed  Google Scholar 

  62. Lee TI, Kao YH, Chen YC, Huang JH, Hsu MI, Chen YJ (2013) The dipeptidyl peptidase-4 inhibitor-sitagliptin modulates calcium dysregulation, inflammation, and PPARs in hypertensive cardiomyocytes. Int J Cardiol 168:5390–5395. https://doi.org/10.1016/j.ijcard.2013.08.051

    Article  PubMed  Google Scholar 

  63. Koyani CN, Kolesnik E, Wölkart G, Shrestha N, Scheruebel S, Trummer C, Zorn-Pauly K, Hammer A, Lang P, Reicher H, Maechler H (2017) Dipeptidyl peptidase-4 independent cardiac dysfunction links saxagliptin to heart failure. Biochem Pharmacol 145:64–80. https://doi.org/10.1016/j.bcp.2017.08.021

    Article  CAS  PubMed  Google Scholar 

  64. Belke DD, Dillmann WH (2004) Altered cardiac calcium handling in diabetes. Curr Hypertens Rep 6:424–429. https://doi.org/10.1007/s11906-004-0035-3

    Article  PubMed  Google Scholar 

  65. Frati G, Schirone L, Chimenti I, Yee D, Biondi-Zoccai G, Volpe M, Sciarretta S (2017) An overview of the inflammatory signalling mechanisms in the myocardium underlying the development of diabetic cardiomyopathy. Cardiovasc Res 113:378–388. https://doi.org/10.1093/cvr/cvx011

    Article  CAS  PubMed  Google Scholar 

  66. Qi Y, Du X, Yao X, Zhao Y (2019) Vildagliptin inhibits high free fatty acid (FFA)-induced NLRP3 inflammasome activation in endothelial cells. Artif Cells Nanomed Biotechnol 47:1067–1074. https://doi.org/10.1080/21691401.2019.1578783

    Article  CAS  PubMed  Google Scholar 

  67. Adeghate E (2004) Molecular and cellular basis of the aetiology and management of diabetic cardiomyopathy: a short review. Mol Cell Biochem 261:187–191. https://doi.org/10.1023/b:mcbi.0000028755.86521.11

    Article  CAS  PubMed  Google Scholar 

  68. Evangelista I, Nuti R, Picchioni T, Dotta F, Palazzuoli A (2019) Molecular dysfunction and phenotypic derangement in diabetic cardiomyopathy. Int J Mol Sci 20:3264. https://doi.org/10.3390/ijms20133264

    Article  CAS  PubMed Central  Google Scholar 

  69. Moon JS, Nakahira K, Chung KP, DeNicola GM, Koo MJ, Pabón MA, Rooney KT, Yoon JH, Ryter SW, Stout-Delgado H, Choi AMK (2016) NOX4-dependent fatty acid oxidation promotes NLRP3 inflammasome activation in macrophages. Nat Med 22(9):1002–1012. https://doi.org/10.1038/nm.4153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhong J, Rao X, Rajagopalan S (2013) An emerging role of dipeptidyl peptidase 4 (DPP4) beyond glucose control: potential implications in cardiovascular disease. Atherosclerosis 226:305–314. https://doi.org/10.1016/j.atherosclerosis.2012.09.012

    Article  CAS  PubMed  Google Scholar 

  71. Alam MA, Chowdhury MRH, Jain P, Sagor MAT, Reza HM (2015) DPP-4 inhibitor sitagliptin prevents inflammation and oxidative stress of heart and kidney in two kidney and one clip (2K1C) rats. Diabetol Metab Syndr 7:107. https://doi.org/10.1186/s13098-015-0095-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Cheng X, Wang H, Zhang X, Zhao S, Zhou Z, Mu X, Zhao C, Teng W (2017) The role of SDF-1/CXCR4/CXCR7 in neuronal regeneration after cerebral ischemia. Front Neurosci 11:590. https://doi.org/10.3389/fnins.2017.00590

    Article  PubMed  PubMed Central  Google Scholar 

  73. Li Y, Huang J, He X, Tang G, Tang YH, Liu Y, Lin X, Lu Y, Yang GY, Wang Y (2014) Postacute stromal cell-derived factor-1α expression promotes neurovascular recovery in ischemic mice. Stroke 45:1822–1829. https://doi.org/10.1161/STROKEAHA.114.005078

    Article  CAS  PubMed  Google Scholar 

  74. Robin AM, Zhang ZG, Wang L, Zhang RL, Katakowski M, Zhang L, Wang Y, Zhang C, Chopp M (2006) Stromal cell-derived factor 1alpha mediates neural progenitor cell motility after focal cerebral ischemia. J Cereb Blood Flow Metab 26:125–134. https://doi.org/10.1038/sj.jcbfm.9600172

    Article  CAS  PubMed  Google Scholar 

  75. Chiazza F, Tammen H, Pintana H, Lietzau G, Collino M, Nyström T, Klein T, Darsalia V, Patrone C (2018) The effect of DPP-4 inhibition to improve functional outcome after stroke is mediated by the SDF-1α/CXCR4 pathway. Cardiovasc Diabetol 17:60. https://doi.org/10.1186/s12933-018-0702-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Martino G, Butti E, Bacigaluppi M (2014) Neurogenesis or non-neurogenesis: that is the question. J Clin Invest 124:970–973. https://doi.org/10.1172/JCI74419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yin Y, Duan J, Guo C, Wei G, Wang Y, Guan Y, Mu F, Yao M, Xi M, Wen A (2017) Danshensu accelerates angiogenesis after myocardial infarction in rats and promotes the functions of endothelial progenitor cells through SDF-1alpha/CXCR4 axis. Eur J Pharmacol 814:274–282. https://doi.org/10.1016/j.ejphar.2017.08.035

    Article  CAS  PubMed  Google Scholar 

  78. Connelly KA, Zhang Y, Advani A, Advani SL, Thai K, Yuen DA, Gilbert RE (2013) DPP-4 inhibition attenuates cardiac dysfunction and adverse remodeling following myocardial infarction in rats with experimental diabetes. Cardiovasc Ther 31:259–267. https://doi.org/10.1111/1755-5922.12005

    Article  CAS  PubMed  Google Scholar 

  79. Lenski M, Kazakov A, Marx N, Böhm M, Laufs U (2011) Effects of DPP-4 inhibition on cardiac metabolism and function in mice. J Mol Cell Cardiol 51:906–918. https://doi.org/10.1016/j.yjmcc.2011.08.001

    Article  CAS  PubMed  Google Scholar 

  80. Aroor AR, Sowers JR, Bender SB, Nistala R, Garro M, Mugerfeld I, Hayden MR, Johnson MS, Salam M, Whaley-Connell A, Demarco VG (2013) Dipeptidyl peptidase inhibition is associated with improvement in blood pressure and diastolic function in insulin-resistant male Zucker obese rats. Endocrinology 154:2501–2513. https://doi.org/10.1210/en.2013-1096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Theiss HD, Vallaster M, Rischpler C, Krieg L, Zaruba MM, Brunner S, Vanchev Y, Fischer R, Gröbner M, Huber B, Wollenweber T, Assmann G, Mueller-Hoecker J, Hacker M, Franz WM (2011) Dual stem cell therapy after myocardial infarction acts specifically by enhanced homing via the SDF-1/CXCR4 axis. Stem Cell Res 7:244–255. https://doi.org/10.1016/j.scr.2011.05.003

    Article  CAS  PubMed  Google Scholar 

  82. Shah Z, Pineda C, Kampfrath T, Maiseyeu A, Ying Z, Racoma I, Deiuliis J, Xu X, Sun Q, Moffatt-Bruce S, Villamena F, Rajagopalan S (2011) Acute DPP-4 inhibition modulates vascular tone through GLP-1 independent pathways. Vasc Pharmacol 55:2–9. https://doi.org/10.1016/j.vph.2011.03.001

    Article  CAS  Google Scholar 

  83. Matsubara J, Sugiyama S, Sugamura K, Nakamura T, Fujiwara Y, Akiyama E, Kurokawa H, Nozaki T, Ohba K, Konishi M, Maeda H, Izumiya Y, Kaikita K, Sumida H, Jinnouchi H, Matsui K, Kim-Mitsuyama S, Takeya M, Ogawa H (2012) A dipeptidyl peptidase-4 inhibitor, des-fluoro-sitagliptin, improves endothelial function and reduces atherosclerotic lesion formation in apolipoprotein E-deficient mice. J Am Coll Cardiol 59:265–276. https://doi.org/10.1016/j.jacc.2011.07.053

    Article  CAS  PubMed  Google Scholar 

  84. Sauvé M, Ban K, Momen MA, Zhou YQ, Henkelman RM, Husain M, Drucker DJ (2010) Genetic deletion or pharmacological inhibition of dipeptidyl peptidase-4 improves cardiovascular outcomes after myocardial infarction in mice. Diabetes 59:1063–1073. https://doi.org/10.2337/db09-0955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bose AK, Mocanu MM, Carr RD, Brand CL, Yellon DM (2005) Glucagon-like peptide 1 can directly protect the heart against ischemia/reperfusion injury. Diabetes 54:146–151. https://doi.org/10.2337/diabetes.54.1.146

    Article  CAS  PubMed  Google Scholar 

  86. Huisamen B, Genis A, Marais E, Lochner A (2011) Pre-treatment with a DPP-4 inhibitor is infarct sparing in hearts from obese, pre-diabetic rats. Cardiovasc Drugs Ther 25:13–20. https://doi.org/10.1007/s10557-010-6271-7

    Article  CAS  PubMed  Google Scholar 

  87. Yin M, Silljé HH, Meissner M, van Gilst WH, de Boer RA (2011) Early and late effects of the DPP-4 inhibitor vildagliptin in a rat model of post-myocardial infarction heart failure. Cardiovasc Diabetol 10:85. https://doi.org/10.1186/1475-2840-10-85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Arruda-Junior D, Socas L, Dariolli R, Antonio E, Tucci P, dos Santos L, Girardi A (2014) Dipeptidyl peptidase IV inhibition ameliorates cardiorenal function in experimental heart failure (701.9). FASEB J 28:701–709

    Google Scholar 

  89. Mason RP, Jacob RF, Kubant R, Ciszewski A, Corbalan JJ, Malinski T (2012) Dipeptidyl peptidase-4 inhibition with saxagliptin enhanced nitric oxide release and reduced blood pressure and sICAM-1 levels in hypertensive rats. J Cardiovasc Pharmacol 60:467–473. https://doi.org/10.1097/FJC.0b013e31826be204

    Article  CAS  PubMed  Google Scholar 

  90. Liu L, Liu J, Wong WT, Tian XY, Lau CW, Wang YX, Xu G, Pu Y, Zhu Z, Xu A, Lam KS, Chen ZY, Ng CF, Yao X, Huang Y (2012) Dipeptidyl peptidase 4 inhibitor sitagliptin protects endothelial function in hypertension through a glucagon-like peptide 1-dependent mechanism. Hypertension 60:833–841. https://doi.org/10.1161/HYPERTENSIONAHA.112.195115

    Article  CAS  PubMed  Google Scholar 

  91. Fadini GP, Avogaro A (2011) Cardiovascular effects of DPP-4 inhibition: beyond GLP-1. Vasc Pharmacol 55:10–16. https://doi.org/10.1016/j.vph.2011.05.001

    Article  CAS  Google Scholar 

  92. Scirica BM, Bhatt DL, Braunwald E, Steg PG, Davidson J, Hirshberg B, Ohman P, Frederich R, Wiviott SD, Hoffman EB, Cavender MA (2013) Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med 369:1317–1326. https://doi.org/10.1056/NEJMoa1307684

    Article  CAS  PubMed  Google Scholar 

  93. White WB, Cannon CP, Heller SR, Nissen SE, Bergenstal RM, Bakris GL, Perez AT, Fleck PR, Mehta CR, Kupfer S, Wilson C (2013) Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N Engl J Med 369:1327–1335. https://doi.org/10.1056/NEJMoa1305889

    Article  CAS  PubMed  Google Scholar 

  94. FDA (2016) FDA drug safety communication: FDA adds warnings about heart failure risk to labels of type 2 diabetes medicines containing saxagliptin and alogliptin. U.S. Food and Drug Administration. https://www.fda.gov/media/96895/download. Accessed 10 May 2019

  95. Cattadori G, Pantanetti P, Ambrosio G (2019) Glucose-lowering drugs and heart failure: implications of recent cardiovascular outcome trials in type 2 diabetes. Diabetes Res Clin Pract 157:107835. https://doi.org/10.1016/j.diabres.2019.107835

    Article  CAS  PubMed  Google Scholar 

  96. Monami M, Ahrén B, Dicembrini I, Mannucci E (2013) Dipeptidyl peptidase-4 inhibitors and cardiovascular risk: a meta-analysis of randomized clinical trials. Diabetes Obes Metab 15:112–120. https://doi.org/10.1111/dom.12000

    Article  CAS  PubMed  Google Scholar 

  97. Patil HR, Al Badarin FJ, Al Shami HA, Bhatti SK, Lavie CJ, Bell DS, O’Keefe JH (2012) Meta-analysis of effect of dipeptidyl peptidase-4 inhibitors on cardiovascular risk in type 2 diabetes mellitus. Am J Cardiol 110:826–833. https://doi.org/10.1016/j.amjcard.2012.04.061

    Article  CAS  PubMed  Google Scholar 

  98. Iqbal N, Parker A, Frederich R, Donovan M, Hirshberg B (2014) Assessment of the cardiovascular safety of saxagliptin in patients with type 2 diabetes mellitus: pooled analysis of 20 clinical trials. Cardiovasc Diabetol 13:33. https://doi.org/10.1186/1475-2840-13-33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Frederich R, Alexander JH, Fiedorek FT, Donovan M, Berglind N, Harris S, Chen R, Wolf R, Mahaffey KW (2010) A systematic assessment of cardiovascular outcomes in the saxagliptin drug development program for type 2 diabetes. Postgrad Med 122:16–27. https://doi.org/10.3810/pgm.2010.05.2138

    Article  PubMed  Google Scholar 

  100. Weir DL, McAlister FA, Senthilselvan A, Minhas-Sandhu JK, Eurich DT (2014) Sitagliptin use in patients with diabetes and heart failure: a population-based retrospective cohort study. JACC Heart Fail 2:573–582. https://doi.org/10.1016/j.jchf.2014.04.005

    Article  PubMed  Google Scholar 

  101. Eurich DT, Simpson S, Senthilselvan A, Asche CV, Sandhu-Minhas JK, McAlister FA (2013) Comparative safety and effectiveness of sitagliptin in patients with type 2 diabetes: retrospective population based cohort study. BMJ 346:f2267. https://doi.org/10.1136/bmj.f2267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Johansen OE, Neubacher D, von Eynatten M, Patel S, Woerle HJ (2012) Cardiovascular safety with linagliptin in patients with type 2 diabetes mellitus: a pre-specified, prospective, and adjudicated meta-analysis of a phase 3 programme. Cardiovasc Diabetol 11:3. https://doi.org/10.1186/1475-2840-11-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Schweizer A, Dejager S, Foley JE, Couturier A, Ligueros-Saylan M, Kothny W (2010) Assessing the cardio-cerebrovascular safety of vildagliptin: meta-analysis of adjudicated events from a large phase III type 2 diabetes population. Diabetes Obes Metab 12:485–494. https://doi.org/10.1111/j.1463-1326.2010.01215.x

    Article  CAS  PubMed  Google Scholar 

  104. Mosenzon O, Raz I, Scirica BM, Hirshberg B, Stahre CI, Steg PG, Davidson J, Ohman P, Price DL, Frederich B, Udell JA (2013) Baseline characteristics of the patient population in the Saxagliptin Assessment of Vascular Outcomes Recorded in Patients with Diabetes Mellitus (SAVOR)- TIMI 53 trial. Diabetes Metab Res Rev 29:417–426

    Article  CAS  PubMed  Google Scholar 

  105. Green JB, Bethel MA, Armstrong PW, Buse JB, Engel SS, Garg J, Josse R, Kaufman KD, Koglin J, Korn S, Lachin JM (2015) Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes [published correction appears in N Engl J Med 2015;373:586]. N Engl J Med 373:232–242. https://doi.org/10.1056/NEJMoa1501352

    Article  CAS  PubMed  Google Scholar 

  106. Rosenstock J, Perkovic V, Johansen OE, Cooper ME, Kahn SE, Marx N, Alexander JH, Pencina M, Toto RD, Wanner C, Zinman B (2019) Effect of linagliptin vs placebo on major cardiovascular events in adults with type 2 diabetes and high cardiovascular and renal risk: the CARMELINA randomized clinical trial. JAMA 321:69–79. https://doi.org/10.1001/jama.2018.18269

    Article  CAS  PubMed  Google Scholar 

  107. Seferović PM, Coats AJ, Ponikowski P, Filippatos G, Huelsmann M, Jhund PS, Polovina MM, Komajda M, Seferović J, Sari I, Cosentino F (2020) European Society of Cardiology/Heart Failure Association position paper on the role and safety of new glucose-lowering drugs in patients with heart failure. Eur J Heart Fail 22:196–213. https://doi.org/10.1002/ejhf.1673

    Article  PubMed  Google Scholar 

  108. Rosenstock J, Kahn SE, Johansen OE, Zinman B, Espeland MA, Woerle HJ, Pfarr E, Keller A, Mattheus M, Baanstra D, Meinicke T (2019) Effect of linagliptin vs glimepiride on major adverse cardiovascular outcomes in patients with type 2 diabetes: the CAROLINA randomized clinical trial [published online ahead of print, 2019 Sep 19] [published correction appears in JAMA. 2019;322:2138]. JAMA 322:1155–1166. https://doi.org/10.1001/jama.2019.13772

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  109. McMurray JJ, Ponikowski P, Bolli GB, Lukashevich V, Kozlovski P, Kothny W, Lewsey JD, Krum H (2018) Effects of vildagliptin on ventricular function in patients with type 2 diabetes mellitus and heart failure: a randomized placebo-controlled trial. JACC Heart Fail 6:8–17. https://doi.org/10.1016/j.jchf.2017.08.004

    Article  PubMed  Google Scholar 

  110. McGuire DK, Van de Werf F, Armstrong PW, Standl E, Koglin J, Green JB, Bethel MA, Cornel JH, Lopes RD, Halvorsen S, Ambrosio G (2016) Association between sitagliptin use and heart failure hospitalization and related outcomes in type 2 diabetes mellitus: secondary analysis of a randomized clinical trial. JAMA Cardiol 1:126–135. https://doi.org/10.1001/jamacardio.2016.0103

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Faculty of Medical Sciences, University of Kragujevac (Junior Project No. 03/18).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Jakovljevic.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rankovic, M., Jeremic, N., Srejovic, I. et al. Dipeptidyl peptidase-4 inhibitors as new tools for cardioprotection. Heart Fail Rev 26, 437–450 (2021). https://doi.org/10.1007/s10741-020-10005-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-020-10005-5

Keywords

Navigation