Skip to main content

Advertisement

Log in

The role of mesenchymal stem cells in bone repair and regeneration

  • General Review
  • Published:
European Journal of Orthopaedic Surgery & Traumatology Aims and scope Submit manuscript

Abstract

Despite the undisputed modern development of synthetic biomaterials that range from bioactive unresorbable to restorable materials, clinically applied osteoconduction bone substitutes still have limitations in the treatment of bone defects. These are the result of the physical and chemical properties of the utilized materials and the biological interactions associated with both local and general reactions of the organism. Mesenchymal stem cells constitute a promising treatment alternative in orthopedics. Preclinical studies regarding the use of mesenchymal stem cells have shown good therapeutic results. However, it is still necessary to advance further in this area and enable the treatment of patients with critically large bone defects. The aim of this review is to describe the role of mesenchymal stem cells in bone repair and regeneration, describe the techniques used in the clinical application of mesenchymal stem cells and outline future research endeavors in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agacayak S, Gulsun B, Ucan MC, Karaoz E, Nergiz Y (2012) Effects of mesenchymal stem cells in critical size bone defect. Eur Rev Pharmacol Sci 16:679–686

    CAS  Google Scholar 

  2. Greenwald AS, Boden SD, Goldberg VM, Khan Y, Laurencin CT, Rosier RN (2001) Bone-graft substitutes: facts, fictions, and applications. J Bone Joint Surg [Am] 83-A:S98–S103

    Google Scholar 

  3. Urist MR, Silverman BF, Buring K, Dubuc FL, Rosenberg JM (1967) The bone induction principle. Clin Orthop 53:243–283

    Article  CAS  PubMed  Google Scholar 

  4. Mizuno D, Agata H, Furue H, Narita Y, Watanabe N, Ishii Y, Ueda M, Tojo A, Kagami H (2010) Limited but heterogeneous osteogenic response of human bone marrow mesenchymal stem cells to bone morphogenetic protein-2 and serum. Growth Factors 28:34–43

    Article  CAS  PubMed  Google Scholar 

  5. Šponer P, Urban K, Kučera T, Kohout A, Brtková J, Knížek J (2011) The use of interconnected β-tricalcium phosphate as bone substitute after curettage of benign bone tumours. Eur J Orthop Surg Traumatol 21:235–241

    Article  Google Scholar 

  6. Wenz B, Leech B, Horst M (2001) Analysis of the risk of transmitting bovine spongiform encephalopathy though bone grafts derived from bovine bone. Biomaterials 22:1599–1606

    Article  CAS  PubMed  Google Scholar 

  7. Khan Y, Yaszemski MJ, Mikos AG, Laurencin CT (2008) Tissue engineering of bone: material and matrix consideration. J Bone Joint Surg [Am] 90-A:S36–S42

    Article  Google Scholar 

  8. Hak DJ (2007) The use of osteoconductive bone graft substitutes in orthopaedic trauma. J Am Acad Orthop Surg 15:525–536

    PubMed  Google Scholar 

  9. Hench LL, Polak JM (2002) Third-generation biomedical materials. Science 295:1014–1017

    Article  CAS  PubMed  Google Scholar 

  10. Mankani MH, Kuznetsov SA, Fowler B, Kingman A, Gehron Robey P (2001) In vivo bone formation by human bone marrow stromal cells: effect of carrier particle size and shape. Biotechnol Bioeng 72:96–107

    Article  CAS  PubMed  Google Scholar 

  11. Kasten P, Vogel J, Luginbuhl R, Niemeyer P, Tonak M, Lorenz H, Helbig L, Weiss S, Fellenberg J, Leo A, Simank H-G, Richter W (2005) Ectopic bone formation associated with mesenchymal stem cells in a resorbable calcium deficient hydroxyapatite carrier. Biomaterials 26:5879–5889

    Article  CAS  PubMed  Google Scholar 

  12. Kasten P, Beyen I, Niemeyer P, Luginbuhl R, Bohner M, Richter W (2008) Porosity and pore size of β-tricalcium phosphate scaffold can influence protein production and osteogenic differentiation of human mesenchymal stem cells: an in vitro and in vivo study. Acta Biomater 4:1904–1915

    Article  CAS  PubMed  Google Scholar 

  13. Hilfiker A, Kasper C, Hass R, Haverich A (2011) Mesenchymal stem cells and progenitor cells in connective tissue engineering and regenerative medicine: is there a future for transplantation? Langenbecks Arch Surg 396:489–497

    Article  PubMed  Google Scholar 

  14. Méndez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA, Scadden DT, Ma’ayan A, Enikolopov GN, Frenette PS (2010) Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466:829–834

    Google Scholar 

  15. Hass R, Kasper C, Böhm S, Jacobs R (2011) Different populations and sources of human mesenchymal stem cells (MSC): a comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal 9:1–14

    Article  Google Scholar 

  16. Ling L, Nurcombe V, Cool SM (2009) Wnt signaling controls the fate of mesenchymal stem cells. Gene 433:1–7

    Article  CAS  PubMed  Google Scholar 

  17. Peng L, Jia Z, Yin X, Zhang X, Liu Y, Chen P, Ma K, Zhou C (2008) Comparative analysis of mesenchymal stem cells from bone marrow, cartilage, and adipose tissue. Stem Cells Dev 17:761–773

    Article  CAS  PubMed  Google Scholar 

  18. Majore I, Moretti P, Stahl F, Hass R, Kasper C (2011) Growth and differentiation properties of mesenchymal stromal cell populations derived from whole human umbilical cord. Stem Cell Rev Rep 7:17–31

    Article  Google Scholar 

  19. Mobasheri A, Csaki C, Clutterbuck AL, Rahmanzadeh M, Shakibaei M (2009) Mesenchymal stem cells in connective tissue engineering and regenerative medicine: applications in cartilage repair and osteoarthritis therapy. Histol Histopathol 24:347–366

    CAS  PubMed  Google Scholar 

  20. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for cellular therapy position statement. Cytotherapy 8:315–317

    Article  CAS  PubMed  Google Scholar 

  21. Qian H, Le Blanc K, Sigvardsson M (2012) Primary mesenchymal stem and progenitor cells from bone marrow lack expression of CD44 protein. J Biol Chem 287:25795–25807

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Ren G, Zhao X, Zhang L, Zhang J, L’Huillier A, Ling W, Roberts AI, Le AD, Shi S, Shao C, Shi Y (2010) Inflammatory cytokine-induced intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 in mesenchymal stem cells are critical for immunosuppression. J Immunol 184:2321–2328

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Lin G, Liu G, Banie L, Wang G, Ning H, Lue TF, Lin CS (2011) Tissue distribution of mesenchymal stem cell marker Stro-1. Stem Cells Dev 20:1747–1752

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Bruder SP, Kurth AA, Shea M, Hayes WC, Jaiswal N, Kadiyala S (1998) Bone regeneration by implantation of purified, culture-expanded human mesenchymal stem cells. J Orthop Res 16:155–162

    Article  CAS  PubMed  Google Scholar 

  25. Kon E, Muraglia A, Cosi A, Bianco P, Marcacci M, Martin I, Boyde A, Ruspantini I, Chistolini P, Rocca M, Gardino R, Cancedda R, Quarto R (2000) Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J Biomed Mat Res 49:328–337

    Article  CAS  Google Scholar 

  26. Warren S, Nacamuli RK, Song HJ, Longaker MT (2004) Tissue-engineered bone using mesenchymal stem cells and a biodegradable scaffold. J Craniofac Surg 15:34–37

    Article  PubMed  Google Scholar 

  27. Viateau V, Guillemin G, Bousson V, Oudina K, Hannouche D, Sedel L, Logeart-Avramoglou D, Petite H (2007) Long-bone critical-size defects treated with tissue-engineered grafts: a study on Wheel. J Orthop Res 25:741–749

    Article  PubMed  Google Scholar 

  28. Herzog K (1951) Verlangerung osteotomie unter Verwendung des Perkutan gezielt verriegelten Markangels. Unfallheikunde 42:26

    Google Scholar 

  29. Connolly JF (1995) Injectable bone marrow preparations to stimulate osteogenic repair. Clin Orthop 313:8–18

    PubMed  Google Scholar 

  30. Hernigou P, Poignard A, Beaujean F, Rouard H (2005) Percutaneous autologous bone-marrow grafting for nonunions: influence of the number and concentration of progenitor cells. J Bone Joint Surg [Am] 87-A:1430–1437

    Article  Google Scholar 

  31. Cuomo AV, Virk M, Petrigliano F, Morgan EF, Lieberman JR (2009) Mesenchymal stem cell concentration and bone repair: potential pitfalls from bench to bedside. J Bone Joint Surg [Am] 91-A:1073–1083

    Article  Google Scholar 

  32. Wongchuensoontorn C, Liebehenschel N, Schwarz U et al (2009) Application of a new chair-side method for the harvest of mesenchymal stem cells in a patient with nonunion of a fracture of the atrophic mandible—a case report. J Craniomaxillofac Surg 37:155–161

    Article  PubMed  Google Scholar 

  33. Devine SM, Bartholomew AM, Mahmud N et al (2001) Mesenchymal stem cells are capable of homing to the bone marrow of non-human primates following systemic infusion. Exp Hematom 29:244–255

    Article  CAS  Google Scholar 

  34. Liu L, Sun Z, Chen B et al (2006) Ex vivo expansion and in vivo infusion of bone marrow-derived FIk-1+ CD31− CD34− mesenchymal stem cells: feasibility and safety from monkey to human. Stem Cells Dev 15:349–357

    Article  CAS  PubMed  Google Scholar 

  35. Horwitz EM, Gordon PL, Koo WK et al (2002) Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: implications for cell therapy of bone. Proc Natl Acad Sci USA 99:8932–8937

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Schrepter S, Deuse T, Reichenspurner H et al (2007) Stem cell transplantation: the lung barrier. Transplant Proc 39:573–576

    Article  Google Scholar 

  37. Quarto R, Masrogiacomo M, Cancedda R et al (2001) Repair of large bone defects with the use of autologous bone marrow stroma cells. N Engl J Med 344:385–386

    Article  CAS  PubMed  Google Scholar 

  38. Marcacci M, Kon E, Moukhachev V et al (2007) Stem cells associated with macroporous bioceramics for long bone repair: 6- to 7-year outcome of a pilot clinical study. Tissue Eng 13:947–955

    Article  CAS  PubMed  Google Scholar 

  39. Kawate K, Tajina H, Ohgushi H et al (2006) Tissue-engineered approach for the treatment of steroid-induced osteonecrosis of the femoral head: transplantation of autologous mesenchymal stem cell cultured with beta-tricalcium phosphate ceramics and free vascularized fibula. Artif Organs 30:952–960

    Article  Google Scholar 

  40. Muschler GF, Matsukara Y, Nitto H et al (2005) Selective retention of bone marrow-derived cells to enhance spinal vision. Clin Orthop 432:242–251

    Article  PubMed  Google Scholar 

  41. Gamradt SC, Lieberman JR (2004) Genetic modification of stem cells to enhance bone repair. Ann Biomed Eng 32:136–147

    Article  PubMed  Google Scholar 

  42. Gamradt SC, Abe N, Bahamonde ME et al (2006) Tracking expression of virally mediated BMP-2 in gene therapy for bone repair. Clin Orthop 450:238–245

    Article  PubMed  Google Scholar 

  43. Lin L, Shen Q, Wei X et al (2009) Comparison of osteogenic potentials of BMP4 transduced stem cells from autologous bone marrow and fat tissue in a rabbit model of calvarial defects. Calcif Tissue Int 85:55–65

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grant IGA MZ NT 13477-4. Dr. Šponer reports grants from Interní Grantová Agentura MZ ČR, during the conduct of the study. Dr. Kučera reports grants from Interní Grantová Agentura MZ ČR, during the conduct of the study. Dr. Diaz-Garcia has nothing to disclose. Dr. Filip reports grants from Interní Grantová Agentura MZ ČR, during the conduct of the study.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Šponer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Šponer, P., Kučera, T., Diaz-Garcia, D. et al. The role of mesenchymal stem cells in bone repair and regeneration. Eur J Orthop Surg Traumatol 24, 257–262 (2014). https://doi.org/10.1007/s00590-013-1328-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00590-013-1328-5

Keywords

Navigation