Skip to main content

Advertisement

Log in

Mesenchymal stem cells and progenitor cells in connective tissue engineering and regenerative medicine: is there a future for transplantation?

  • Review Article
  • Published:
Langenbeck's Archives of Surgery Aims and scope Submit manuscript

Abstract

Purpose

Transplantation surgery suffers from a shortage of donor organs worldwide. Cell injection and tissue engineering (TE), thus emerge as alternative therapy options. The purpose of this article is to review the progress of TE technology, focusing on mesenchymal stem cells (MSC) as a cell source for artificial functional tissue.

Results

MSC from many different sources can be minimally invasively harvested: peripheral blood, fat tissue, bone marrow, amniotic fluid, cord blood. In comparison to embryonic stem cells (ESC), there are no ethical concerns; MSC can be extracted from autologous or allogenic tissue and cause an immune modulatory effect by suppressing the graft-versus-host reaction (GvHD). Furthermore, MSC do not develop into teratomas when transplanted, a consequence observed with ESC and iPS cells.

Conclusion

MSC as multipotent cells are capable of differentiating into mesodermal and non-mesodermal lineages. However, further studies must be performed to elucidate the differentiation capacity of MSC from different sources, and to understand the involved pathways and processes. Already, MSC have been successfully applied in clinical trials, e.g., to heal large bone defects, cartilage lesions, spinal cord injuries, cardiovascular diseases, hematological pathologies, osteogenesis imperfecta, and GvHD. A detailed understanding of the behavior and homing of MSC is desirable to enlarge the clinical application spectrum of MSC towards the in vitro generation of functional tissue for implantation, for example, resilient cartilage, contractile myocardial replacement tissue, and bioartificial heart valves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Calne RY, Rolles K, White DJ, Thiru S, Evans DB, McMaster P, Dunn DC, Craddock GN, Henderson RG, Aziz S, Lewis P (1979) Cyclosporin A initially as the only immunosuppressant in 34 recipients of cadaveric organs: 32 kidneys, 2 pancreases, and 2 livers. Lancet 2(8151):1033–1036

    PubMed  CAS  Google Scholar 

  2. Fuchs JR, Nasseri BA, Vacanti JP (2001) Tissue engineering: a 21st century solution to surgical reconstruction. Ann Thorac Surg 72(2):577–591

    PubMed  CAS  Google Scholar 

  3. Lutter G, Metzner A, Jahnke T, Bombien R, Boldt J, Iino K, Cremer J, Stock UA (2010) Percutaneous tissue-engineered pulmonary valved stent implantation. Ann Thorac Surg 89(1):259–263. doi:10.1016/j.athoracsur.2009.06.048

    PubMed  Google Scholar 

  4. Stock UA, Vacanti JP, Mayer JE Jr, Wahlers T (2002) Tissue engineering of heart valves—current aspects. Thorac Cardiovasc Surg 50(3):184–193. doi:10.1055/s-2002-32406

    PubMed  CAS  Google Scholar 

  5. Baraki H, Tudorache I, Braun M, Hoffler K, Gorler A, Lichtenberg A, Bara C, Calistru A, Brandes G, Hewicker-Trautwein M, Hilfiker A, Haverich A, Cebotari S (2009) Orthotopic replacement of the aortic valve with decellularized allograft in a sheep model. Biomaterials 30(31):6240–6246. doi:10.1016/j.biomaterials.2009.07.068

    PubMed  CAS  Google Scholar 

  6. Lichtenberg A, Tudorache I, Cebotari S, Suprunov M, Tudorache G, Goerler H, Park JK, Hilfiker-Kleiner D, Ringes-Lichtenberg S, Karck M, Brandes G, Hilfiker A, Haverich A (2006) Preclinical testing of tissue-engineered heart valves re-endothelialized under simulated physiological conditions. Circulation 114(1 Suppl):I559–I565. doi:10.1161/CIRCULATIONAHA.105.001206

    PubMed  Google Scholar 

  7. Cebotari S, Lichtenberg A, Tudorache I, Hilfiker A, Mertsching H, Leyh R, Breymann T, Kallenbach K, Maniuc L, Batrinac A, Repin O, Maliga O, Ciubotaru A, Haverich A (2006) Clinical application of tissue engineered human heart valves using autologous progenitor cells. Circulation 114(1 Suppl):I132–I137. doi:10.1161/CIRCULATIONAHA.105.001065

    PubMed  Google Scholar 

  8. Schmidt D, Dijkman PE, Driessen-Mol A, Stenger R, Mariani C, Puolakka A, Rissanen M, Deichmann T, Odermatt B, Weber B, Emmert MY, Zund G, Baaijens FP, Hoerstrup SP (2010) Minimally-invasive implantation of living tissue engineered heart valves: a comprehensive approach from autologous vascular cells to stem cells. J Am Coll Cardiol 56(6):510–520. doi:10.1016/j.jacc.2010.04.024

    PubMed  Google Scholar 

  9. Ohyabu Y, Kida N, Kojima H, Taguchi T, Tanaka J, Uemura T (2006) Cartilaginous tissue formation from bone marrow cells using rotating wall vessel (RWV) bioreactor. Biotechnol Bioeng 95(5):1003–1008. doi:10.1002/bit.20892

    PubMed  CAS  Google Scholar 

  10. Tohyama H, Yasuda K, Minami A, Majima T, Iwasaki N, Muneta T, Sekiya I, Yagishita K, Takahashi S, Kurokouchi K, Uchio Y, Iwasa J, Deie M, Adachi N, Sugawara K, Ochi M (2009) Atelocollagen-associated autologous chondrocyte implantation for the repair of chondral defects of the knee: a prospective multicenter clinical trial in Japan. J Orthop Sci 14(5):579–588. doi:10.1007/s00776-009-1384-1

    PubMed  CAS  Google Scholar 

  11. Haisch A (2010) Ear reconstruction through tissue engineering. Adv Otorhinolaryngol 68:108–119. doi:10.1159/000314566

    PubMed  Google Scholar 

  12. Ahmed TA, Giulivi A, Griffith M, Hincke M (2010) Fibrin glues in combination with mesenchymal stem cells to develop a tissue-engineered cartilage substitute. Tissue Eng A. doi:10.1089/ten.TEA.2009.0773

    Google Scholar 

  13. L'Heureux N, Paquet S, Labbe R, Germain L, Auger FA (1998) A completely biological tissue-engineered human blood vessel. FASEB J 12(1):47–56

    PubMed  Google Scholar 

  14. Isenberg BC, Williams C, Tranquillo RT (2006) Small-diameter artificial arteries engineered in vitro. Circ Res 98(1):25–35. doi:10.1161/01.RES.0000196867.12470.84

    PubMed  CAS  Google Scholar 

  15. Kerdjoudj H, Berthelemy N, Rinckenbach S, Kearney-Schwartz A, Montagne K, Schaaf P, Lacolley P, Stoltz JF, Voegel JC, Menu P (2008) Small vessel replacement by human umbilical arteries with polyelectrolyte film-treated arteries: in vivo behavior. J Am Coll Cardiol 52(19):1589–1597. doi:10.1016/j.jacc.2008.08.009

    PubMed  CAS  Google Scholar 

  16. Yang D, Guo T, Nie C, Morris SF (2009) Tissue-engineered blood vessel graft produced by self-derived cells and allogenic acellular matrix: a functional performance and histologic study. Ann Plast Surg 62(3):297–303. doi:10.1097/SAP.0b013e318197eb19

    PubMed  CAS  Google Scholar 

  17. Mirensky TL, Nelson GN, Brennan MP, Roh JD, Hibino N, Yi T, Shinoka T, Breuer CK (2009) Tissue-engineered arterial grafts: long-term results after implantation in a small animal model. J Pediatr Surg 44(6):1127–1132. doi:10.1016/j.jpedsurg.2009.02.035, discussion 1132–1123

    PubMed  Google Scholar 

  18. Mirensky TL, Hibino N, Sawh-Martinez RF, Yi T, Villalona G, Shinoka T, Breuer CK (2010) Tissue-engineered vascular grafts: does cell seeding matter? J Pediatr Surg 45(6):1299–1305. doi:10.1016/j.jpedsurg.2010.02.102

    PubMed  Google Scholar 

  19. Roh JD, Sawh-Martinez R, Brennan MP, Jay SM, Devine L, Rao DA, Yi T, Mirensky TL, Nalbandian A, Udelsman B, Hibino N, Shinoka T, Saltzman WM, Snyder E, Kyriakides TR, Pober JS, Breuer CK (2010) Tissue-engineered vascular grafts transform into mature blood vessels via an inflammation-mediated process of vascular remodeling. Proc Natl Acad Sci USA 107(10):4669–4674. doi:10.1073/pnas.0911465107

    PubMed  CAS  Google Scholar 

  20. Enomoto S, Sumi M, Kajimoto K, Nakazawa Y, Takahashi R, Takabayashi C, Asakura T, Sata M (2010) Long-term patency of small-diameter vascular graft made from fibroin, a silk-based biodegradable material. J Vasc Surg 51(1):155–164. doi:10.1016/j.jvs.2009.09.005

    PubMed  Google Scholar 

  21. Koch S, Flanagan TC, Sachweh JS, Tanios F, Schnoering H, Deichmann T, Ella V, Kellomaki M, Gronloh N, Gries T, Tolba R, Schmitz-Rode T, Jockenhoevel S (2010) Fibrin-polylactide-based tissue-engineered vascular graft in the arterial circulation. Biomaterials 31(17):4731–4739. doi:10.1016/j.biomaterials.2010.02.051

    PubMed  CAS  Google Scholar 

  22. Neff LP, Tillman BW, Yazdani SK, Machingal MA, Yoo JJ, Soker S, Bernish BW, Geary RL, Christ GJ (2010) Vascular smooth muscle enhances functionality of tissue-engineered blood vessels in vivo. J Vasc Surg. doi:10.1016/j.jvs.2010.07.054

    Google Scholar 

  23. Hibino N, McGillicuddy E, Matsumura G, Ichihara Y, Naito Y, Breuer C, Shinoka T (2010) Late-term results of tissue-engineered vascular grafts in humans. J Thorac Cardiovasc Surg 139(2):431–436. doi:10.1016/j.jtcvs.2009.09.057, 436 e431-432

    PubMed  Google Scholar 

  24. Golinski PA, Zoller N, Kippenberger S, Menke H, Bereiter-Hahn J, Bernd A (2009) Development of an engraftable skin equivalent based on matriderm with human keratinocytes and fibroblasts. Handchir Mikrochir Plast Chir 41(6):327–332. doi:10.1055/s-0029-1234132

    PubMed  CAS  Google Scholar 

  25. Huang S, Xu Y, Wu C, Sha D, Fu X (2010) In vitro constitution and in vivo implantation of engineered skin constructs with sweat glands. Biomaterials 31(21):5520–5525. doi:10.1016/j.biomaterials.2010.03.060

    PubMed  CAS  Google Scholar 

  26. Yang J, Woo SL, Yang G, Wang J, Cui L, Liu W, Cao Y (2010) Construction and clinical application of a human tissue-engineered epidermal membrane. Plast Reconstr Surg 125(3):901–909. doi:10.1097/PRS.0b013e3181cc9665

    PubMed  CAS  Google Scholar 

  27. Ignatius A, Blessing H, Liedert A, Schmidt C, Neidlinger-Wilke C, Kaspar D, Friemert B, Claes L (2005) Tissue engineering of bone: effects of mechanical strain on osteoblastic cells in type I collagen matrices. Biomaterials 26(3):311–318. doi:10.1016/j.biomaterials.2004.02.045

    PubMed  CAS  Google Scholar 

  28. Janssen FW, van Dijkhuizen-Radersma R, Van Oorschot A, Oostra J, de Bruijn JD, Van Blitterswijk CA (2010) Human tissue-engineered bone produced in clinically relevant amounts using a semi-automated perfusion bioreactor system: a preliminary study. J Tissue Eng Regen Med 4(1):12–24. doi:10.1002/term.197

    PubMed  CAS  Google Scholar 

  29. Xu HH, Zhao L, Weir MD (2010) Stem cell-calcium phosphate constructs for bone engineering. J Dent Res 89(12):1482–1488. doi:10.1177/0022034510384623

    PubMed  CAS  Google Scholar 

  30. Garvin J, Qi J, Maloney M, Banes AJ (2003) Novel system for engineering bioartificial tendons and application of mechanical load. Tissue Eng 9(5):967–979. doi:10.1089/107632703322495619

    PubMed  CAS  Google Scholar 

  31. Nguyen TD, Liang R, Woo SL, Burton SD, Wu C, Almarza A, Sacks MS, Abramowitch S (2009) Effects of cell seeding and cyclic stretch on the fiber remodeling in an extracellular matrix-derived bioscaffold. Tissue Eng A 15(4):957–963. doi:10.1089/ten.tea.2007.0384

    CAS  Google Scholar 

  32. Friedenstein AJ, Piatetzky S II, Petrakova KV (1966) Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol 16(3):381–390

    PubMed  CAS  Google Scholar 

  33. da Silva ML, Chagastelles PC, Nardi NB (2006) Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci 119(Pt 11):2204–2213

    Google Scholar 

  34. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147

    PubMed  CAS  Google Scholar 

  35. Dennis JE, Merriam A, Awadallah A, Yoo JU, Johnstone B, Caplan AI (1999) A quadripotential mesenchymal progenitor cell isolated from the marrow of an adult mouse. J Bone Miner Res 14(5):700–709

    PubMed  CAS  Google Scholar 

  36. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317

    PubMed  CAS  Google Scholar 

  37. Choong PF, Mok PL, Cheong SK, Leong CF, Then KY (2007) Generating neuron-like cells from BM-derived mesenchymal stromal cells in vitro. Cytotherapy 9(2):170–183

    PubMed  CAS  Google Scholar 

  38. Xu R, Jiang X, Guo Z, Chen J, Zou Y, Ke Y, Zhang S, Li Z, Cai Y, Du M, Qin L, Tang Y, Zeng Y (2008) Functional analysis of neuron-like cells differentiated from neural stem cells derived from bone marrow stroma cells in vitro. Cell Mol Neurobiol 28(4):545–558

    PubMed  Google Scholar 

  39. Sun Y, Chen L, Hou XG, Hou WK, Dong JJ, Sun L, Tang KX, Wang B, Song J, Li H, Wang KX (2007) Differentiation of bone marrow-derived mesenchymal stem cells from diabetic patients into insulin-producing cells in vitro. Chin Med J (Engl) 120(9):771–776

    CAS  Google Scholar 

  40. Saulnier N, Lattanzi W, Puglisi MA, Pani G, Barba M, Piscaglia AC, Giachelia M, Alfieri S, Neri G, Gasbarrini G, Gasbarrini A (2009) Mesenchymal stromal cells multipotency and plasticity: induction toward the hepatic lineage. Eur Rev Med Pharmacol Sci 13(Suppl 1):71–78

    PubMed  Google Scholar 

  41. Marcus AJ, Woodbury D (2008) Fetal stem cells from extra-embryonic tissues: do not discard. J Cell Mol Med 12(3):730–742

    PubMed  CAS  Google Scholar 

  42. Pappa KI, Anagnou NP (2009) Novel sources of fetal stem cells: where do they fit on the developmental continuum? Regen Med 4(3):423–433

    PubMed  Google Scholar 

  43. Can A, Karahuseyinoglu S (2007) Concise review: human umbilical cord stroma with regard to the source of fetus-derived stem cells. Stem Cells 25(11):2886–2895

    PubMed  Google Scholar 

  44. Kita K, Gauglitz GG, Phan TT, Herndon DN, Jeschke MG (2009) Isolation and characterization of mesenchymal stem cells from the sub-amniotic human umbilical cord lining membrane. Stem Cells Dev 19(4):491–502

    Google Scholar 

  45. Covas DT, Siufi JL, Silva AR, Orellana MD (2003) Isolation and culture of umbilical vein mesenchymal stem cells. Braz J Med Biol Res 36(9):1179–1183

    PubMed  CAS  Google Scholar 

  46. Panepucci RA, Siufi JL, Silva WA Jr, Proto-Siquiera R, Neder L, Orellana M, Rocha V, Covas DT, Zago MA (2004) Comparison of gene expression of umbilical cord vein and bone marrow-derived mesenchymal stem cells. Stem Cells 22(7):1263–1278

    PubMed  CAS  Google Scholar 

  47. Sarugaser R, Lickorish D, Baksh D, Hosseini MM, Davies JE (2005) Human umbilical cord perivascular (HUCPV) cells: a source of mesenchymal progenitors. Stem Cells 23(2):220–229

    PubMed  Google Scholar 

  48. La Rocca G, Anzalone R, Corrao S, Magno F, Loria T, Lo Iacono M, Di Stefano A, Giannuzzi P, Marasa L, Cappello F, Zummo G, Farina F (2009) Isolation and characterization of Oct-4+/HLA-G + mesenchymal stem cells from human umbilical cord matrix: differentiation potential and detection of new markers. Histochem Cell Biol 131(2):267–282

    PubMed  Google Scholar 

  49. Mitchell KE, Weiss ML, Mitchell BM, Martin P, Davis D, Morales L, Helwig B, Beerenstrauch M, Abou-Easa K, Hildreth T, Troyer D, Medicetty S (2003) Matrix cells from Wharton's jelly form neurons and glia. Stem Cells 21(1):50–60

    PubMed  CAS  Google Scholar 

  50. Weiss ML, Medicetty S, Bledsoe AR, Rachakatla RS, Choi M, Merchav S, Luo Y, Rao MS, Velagaleti G, Troyer D (2006) Human umbilical cord matrix stem cells: preliminary characterization and effect of transplantation in a rodent model of Parkinson's disease. Stem Cells 24(3):781–792

    PubMed  CAS  Google Scholar 

  51. Karahuseyinoglu S, Cinar O, Kilic E, Kara F, Akay GG, Demiralp DO, Tukun A, Uckan D, Can A (2007) Biology of stem cells in human umbilical cord stroma: in situ and in vitro surveys. Stem Cells 25(2):319–331

    PubMed  CAS  Google Scholar 

  52. Weiss ML, Troyer DL (2006) Stem cells in the umbilical cord. Stem Cell Rev 2(2):155–162

    PubMed  CAS  Google Scholar 

  53. Troyer DL, Weiss ML (2008) Wharton's jelly-derived cells are a primitive stromal cell population. Stem Cells 26(3):591–599. doi:10.1634/stemcells.2007-0439

    PubMed  Google Scholar 

  54. Caplan AI (2009) Why are MSCs therapeutic? New data: new insight. J Pathol 217(2):318–324

    PubMed  CAS  Google Scholar 

  55. Kuo CK, Li WJ, Mauck RL, Tuan RS (2006) Cartilage tissue engineering: its potential and uses. Curr Opin Rheumatol 18(1):64–73

    PubMed  Google Scholar 

  56. Baksh D, Yao R, Tuan RS (2007) Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells 25(6):1384–1392

    PubMed  CAS  Google Scholar 

  57. Majore I, Moretti P, Hass R, Kasper C (2009) Identification of subpopulations in mesenchymal stem cell-like cultures from human umbilical cord. Cell Commun Signal 7:6

    PubMed  Google Scholar 

  58. Hatlapatka T, Moretti P, Lavrentieva A, Hass R, Marquardt N, Roland J, Kasper C (2010) Optimization of culture conditions for the expansion of umbilical cord derived MSC like cells using xeno-free culture conditions. Tissue Eng Part C Methods. doi:10.1089/ten.TEC.2010.0406

    Google Scholar 

  59. Hartmann I, Hollweck T, Haffner S, Krebs M, Meiser B, Reichart B, Eissner G (2010) Umbilical cord tissue-derived mesenchymal stem cells grow best under GMP-compliant culture conditions and maintain their phenotypic and functional properties. J Immunol Methods 363(1):80–89. doi:10.1016/j.jim.2010.10.008

    PubMed  CAS  Google Scholar 

  60. Majore I, Moretti P, Stahl F, Hass R, Kasper C (2010) Growth and differentiation properties of mesenchymal stromal cell populations derived from whole human umbilical cord. Stem Cell Rev. doi:10.1007/s12015-010-9165-y

    Google Scholar 

  61. Vater C, Kasten P, Stiehler M (2010) Culture media for the differentiation of mesenchymal stromal cells. Acta Biomater. doi:10.1016/j.actbio.2010.07.037

    PubMed  Google Scholar 

  62. Kern S, Eichler H, Stoeve J, Kluter H, Bieback K (2006) Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24(5):1294–1301. doi:10.1634/stemcells.2005-0342

    PubMed  CAS  Google Scholar 

  63. Ronziere MC, Perrier E, Mallein-Gerin F, Freyria AM (2010) Chondrogenic potential of bone marrow- and adipose tissue-derived adult human mesenchymal stem cells. Biomed Mater Eng 20(3):145–158. doi:10.3233/BME-2010-0626

    PubMed  CAS  Google Scholar 

  64. Huang GT, Gronthos S, Shi S (2009) Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res 88(9):792–806. doi:10.1177/0022034509340867

    PubMed  CAS  Google Scholar 

  65. Stenderup K, Justesen J, Clausen C, Kassem M (2003) Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone 33(6):919–926

    PubMed  Google Scholar 

  66. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13(12):4279–4295. doi:10.1091/mbc.E02-02-0105

    PubMed  CAS  Google Scholar 

  67. Puetzer JL, Petitte JN, Loboa EG (2010) Comparative review of growth factors for induction of three-dimensional in vitro chondrogenesis in human mesenchymal stem cells isolated from bone marrow and adipose tissue. Tissue Eng B Rev 16(4):435–444. doi:10.1089/ten.TEB.2009.0705

    CAS  Google Scholar 

  68. Pelttari K, Steck E, Richter W (2008) The use of mesenchymal stem cells for chondrogenesis. Injury 39(Suppl 1):S58–S65. doi:10.1016/j.injury.2008.01.038

    PubMed  Google Scholar 

  69. Diekman BO, Rowland CR, Lennon DP, Caplan AI, Guilak F (2010) Chondrogenesis of adult stem cells from adipose tissue and bone marrow: induction by growth factors and cartilage-derived matrix. Tissue Eng A 16(2):523–533. doi:10.1089/ten.TEA.2009.0398

    CAS  Google Scholar 

  70. Kuhbier JW, Weyand B, Radtke C, Vogt PM, Kasper C, Reimers K (2010) Isolation, characterization, differentiation, and application of adipose-derived stem cells. Adv Biochem Eng Biotechnol 123:55–105. doi:10.1007/10_2009_24

    PubMed  CAS  Google Scholar 

  71. Gomillion CT, Burg KJ (2006) Stem cells and adipose tissue engineering. Biomaterials 27(36):6052–6063. doi:10.1016/j.biomaterials.2006.07.033

    PubMed  CAS  Google Scholar 

  72. Hemmrich K, von Heimburg D, Cierpka K, Haydarlioglu S, Pallua N (2005) Optimization of the differentiation of human preadipocytes in vitro. Differentiation 73(1):28–35. doi:10.1111/j.1432-0436.2005.07301003.x

    PubMed  CAS  Google Scholar 

  73. Jorgensen NR, Henriksen Z, Sorensen OH, Civitelli R (2004) Dexamethasone, BMP-2, and 1, 25-dihydroxyvitamin D enhance a more differentiated osteoblast phenotype: validation of an in vitro model for human bone marrow-derived primary osteoblasts. Steroids 69(4):219–226. doi:10.1016/j.steroids.2003.12.005

    PubMed  CAS  Google Scholar 

  74. Oh SH, Witek RP, Bae SH, Zheng D, Jung Y, Piscaglia AC, Petersen BE (2007) Bone marrow-derived hepatic oval cells differentiate into hepatocytes in 2-acetylaminofluorene/partial hepatectomy-induced liver regeneration. Gastroenterology 132(3):1077–1087. doi:10.1053/j.gastro.2007.01.001

    PubMed  CAS  Google Scholar 

  75. Sato Y, Araki H, Kato J, Nakamura K, Kawano Y, Kobune M, Sato T, Miyanishi K, Takayama T, Takahashi M, Takimoto R, Iyama S, Matsunaga T, Ohtani S, Matsuura A, Hamada H, Niitsu Y (2005) Human mesenchymal stem cells xenografted directly to rat liver are differentiated into human hepatocytes without fusion. Blood 106(2):756–763. doi:10.1182/blood-2005-02-0572

    PubMed  CAS  Google Scholar 

  76. Song S, Zhang H, Cuevas J, Sanchez-Ramos J (2007) Comparison of neuron-like cells derived from bone marrow stem cells to those differentiated from adult brain neural stem cells. Stem Cells Dev 16(5):747–756. doi:10.1089/scd.2007.0027

    PubMed  CAS  Google Scholar 

  77. Tondreau T, Dejeneffe M, Meuleman N, Stamatopoulos B, Delforge A, Martiat P, Bron D, Lagneaux L (2008) Gene expression pattern of functional neuronal cells derived from human bone marrow mesenchymal stromal cells. BMC Genomics 9:166. doi:10.1186/1471-2164-9-166

    PubMed  Google Scholar 

  78. Wislet-Gendebien S, Wautier F, Leprince P, Rogister B (2005) Astrocytic and neuronal fate of mesenchymal stem cells expressing nestin. Brain Res Bull 68(1–2):95–102. doi:10.1016/j.brainresbull.2005.08.016

    PubMed  CAS  Google Scholar 

  79. Zhang HT, Fan J, Cai YQ, Zhao SJ, Xue S, Lin JH, Jiang XD, Xu RX (2010) Human Wharton's jelly cells can be induced to differentiate into growth factor-secreting oligodendrocyte progenitor-like cells. Differentiation 79(1):15–20. doi:10.1016/j.diff.2009.09.002

    PubMed  CAS  Google Scholar 

  80. Fu YS, Cheng YC, Lin MY, Cheng H, Chu PM, Chou SC, Shih YH, Ko MH, Sung MS (2006) Conversion of human umbilical cord mesenchymal stem cells in Wharton's jelly to dopaminergic neurons in vitro: potential therapeutic application for Parkinsonism. Stem Cells 24(1):115–124. doi:10.1634/stemcells.2005-0053

    PubMed  Google Scholar 

  81. Moriscot C, de Fraipont F, Richard MJ, Marchand M, Savatier P, Bosco D, Favrot M, Benhamou PY (2005) Human bone marrow mesenchymal stem cells can express insulin and key transcription factors of the endocrine pancreas developmental pathway upon genetic and/or microenvironmental manipulation in vitro. Stem Cells 23(4):594–603. doi:10.1634/stemcells.2004-0123

    PubMed  CAS  Google Scholar 

  82. Tang DQ, Cao LZ, Burkhardt BR, Xia CQ, Litherland SA, Atkinson MA, Yang LJ (2004) In vivo and in vitro characterization of insulin-producing cells obtained from murine bone marrow. Diabetes 53(7):1721–1732

    PubMed  CAS  Google Scholar 

  83. Krabbe C, Zimmer J, Meyer M (2005) Neural transdifferentiation of mesenchymal stem cells–a critical review. APMIS 113(11–12):831–844. doi:10.1111/j.1600-0463.2005.apm_3061.x

    PubMed  Google Scholar 

  84. Wang HS, Hung SC, Peng ST, Huang CC, Wei HM, Guo YJ, Fu YS, Lai MC, Chen CC (2004) Mesenchymal stem cells in the Wharton's jelly of the human umbilical cord. Stem Cells 22(7):1330–1337. doi:10.1634/stemcells.2004-0013

    PubMed  Google Scholar 

  85. Martin-Rendon E, Sweeney D, Lu F, Girdlestone J, Navarrete C, Watt SM (2008) 5-Azacytidine-treated human mesenchymal stem/progenitor cells derived from umbilical cord, cord blood and bone marrow do not generate cardiomyocytes in vitro at high frequencies. Vox Sang 95(2):137–148. doi:10.1111/j.1423-0410.2008.01076.x

    PubMed  CAS  Google Scholar 

  86. Glennie S, Soeiro I, Dyson PJ, Lam EW, Dazzi F (2005) Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood 105(7):2821–2827

    PubMed  CAS  Google Scholar 

  87. Kode JA, Mukherjee S, Joglekar MV, Hardikar AA (2009) Mesenchymal stem cells: immunobiology and role in immunomodulation and tissue regeneration. Cytotherapy 11(4):377–391

    PubMed  CAS  Google Scholar 

  88. Siegel G, Schafer R, Dazzi F (2009) The immunosuppressive properties of mesenchymal stem cells. Transplantation 87(9 Suppl):S45–S49

    PubMed  Google Scholar 

  89. Le Blanc K, Rasmusson I, Sundberg B, Gotherstrom C, Hassan M, Uzunel M, Ringden O (2004) Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 363(9419):1439–1441

    PubMed  Google Scholar 

  90. Ringden O, Uzunel M, Rasmusson I, Remberger M, Sundberg B, Lonnies H, Marschall HU, Dlugosz A, Szakos A, Hassan Z, Omazic B, Aschan J, Barkholt L, Le Blanc K (2006) Mesenchymal stem cells for treatment of therapy-resistant graft-versus-host disease. Transplantation 81(10):1390–1397. doi:10.1097/01.tp.0000214462.63943.14

    PubMed  Google Scholar 

  91. Hui JH, Ouyang HW, Hutmacher DW, Goh JC, Lee EH (2005) Mesenchymal stem cells in musculoskeletal tissue engineering: a review of recent advances in National University of Singapore. Ann Acad Med Singapore 34(2):206–212

    PubMed  CAS  Google Scholar 

  92. Kraus KH, Kirker-Head C (2006) Mesenchymal stem cells and bone regeneration. Vet Surg 35(3):232–242

    PubMed  Google Scholar 

  93. Mobasheri A, Csaki C, Clutterbuck AL, Rahmanzadeh M, Shakibaei M (2009) Mesenchymal stem cells in connective tissue engineering and regenerative medicine: applications in cartilage repair and osteoarthritis therapy. Histol Histopathol 24(3):347–366

    PubMed  CAS  Google Scholar 

  94. Sykova E, Jendelova P, Urdzikova L, Lesny P, Hejcl A (2006) Bone marrow stem cells and polymer hydrogels–two strategies for spinal cord injury repair. Cell Mol Neurobiol 26(7–8):1113–1129

    PubMed  CAS  Google Scholar 

  95. Perin EC, Dohmann HF, Borojevic R, Silva SA, Sousa AL, Silva GV, Mesquita CT, Belem L, Vaughn WK, Rangel FO, Assad JA, Carvalho AC, Branco RV, Rossi MI, Dohmann HJ, Willerson JT (2004) Improved exercise capacity and ischemia 6 and 12 months after transendocardial injection of autologous bone marrow mononuclear cells for ischemic cardiomyopathy. Circulation 110(11 Suppl 1):II213–II218

    PubMed  Google Scholar 

  96. Stamm C, Kleine HD, Westphal B, Petzsch M, Kittner C, Nienaber CA, Freund M, Steinhoff G (2004) CABG and bone marrow stem cell transplantation after myocardial infarction. Thorac Cardiovasc Surg 52(3):152–158

    PubMed  CAS  Google Scholar 

  97. Fouillard L, Chapel A, Bories D, Bouchet S, Costa JM, Rouard H, Herve P, Gourmelon P, Thierry D, Lopez M, Gorin NC (2007) Infusion of allogeneic-related HLA mismatched mesenchymal stem cells for the treatment of incomplete engraftment following autologous haematopoietic stem cell transplantation. Leukemia 21(3):568–570

    PubMed  CAS  Google Scholar 

  98. Lazarus HM, Koc ON, Devine SM, Curtin P, Maziarz RT, Holland HK, Shpall EJ, McCarthy P, Atkinson K, Cooper BW, Gerson SL, Laughlin MJ, Loberiza FR Jr, Moseley AB, Bacigalupo A (2005) Cotransplantation of HLA-identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients. Biol Blood Marrow Transplant 11(5):389–398

    PubMed  Google Scholar 

  99. Horwitz EM, Prockop DJ, Gordon PL, Koo WW, Fitzpatrick LA, Neel MD, McCarville ME, Orchard PJ, Pyeritz RE, Brenner MK (2001) Clinical responses to bone marrow transplantation in children with severe osteogenesis imperfecta. Blood 97(5):1227–1231

    PubMed  CAS  Google Scholar 

  100. Nakamura K, Ito Y, Kawano Y, Kurozumi K, Kobune M, Tsuda H, Bizen A, Honmou O, Niitsu Y, Hamada H (2004) Antitumor effect of genetically engineered mesenchymal stem cells in a rat glioma model. Gene Ther 11(14):1155–1164. doi:10.1038/sj.gt.3302276

    PubMed  CAS  Google Scholar 

  101. Nakamizo A, Marini F, Amano T, Khan A, Studeny M, Gumin J, Chen J, Hentschel S, Vecil G, Dembinski J, Andreeff M, Lang FF (2005) Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Canc Res 65(8):3307–3318. doi:10.1158/0008-5472.CAN-04-1874

    CAS  Google Scholar 

  102. Schichor C, Birnbaum T, Etminan N, Schnell O, Grau S, Miebach S, Aboody K, Padovan C, Straube A, Tonn JC, Goldbrunner R (2006) Vascular endothelial growth factor A contributes to glioma-induced migration of human marrow stromal cells (hMSC). Exp Neurol 199(2):301–310. doi:10.1016/j.expneurol.2005.11.027

    PubMed  CAS  Google Scholar 

  103. Birnbaum T, Roider J, Schankin CJ, Padovan CS, Schichor C, Goldbrunner R, Straube A (2007) Malignant gliomas actively recruit bone marrow stromal cells by secreting angiogenic cytokines. J Neurooncol 83(3):241–247. doi:10.1007/s11060-007-9332-4

    PubMed  CAS  Google Scholar 

  104. Ries C, Egea V, Karow M, Kolb H, Jochum M, Neth P (2007) MMP-2, MT1-MMP, and TIMP-2 are essential for the invasive capacity of human mesenchymal stem cells: differential regulation by inflammatory cytokines. Blood 109(9):4055–4063. doi:10.1182/blood-2006-10-051060

    PubMed  CAS  Google Scholar 

  105. Kim DS, Kim JH, Lee JK, Choi SJ, Kim JS, Jeun SS, Oh W, Yang YS, Chang JW (2009) Overexpression of CXC chemokine receptors is required for the superior glioma-tracking property of umbilical cord blood-derived mesenchymal stem cells. Stem Cells Dev 18(3):511–519. doi:10.1089/scd.2008.0050

    PubMed  CAS  Google Scholar 

  106. Caplan AI, Dennis JE (2006) Mesenchymal stem cells as trophic mediators. J Cell Biochem 98(5):1076–1084

    PubMed  CAS  Google Scholar 

  107. Le Blanc K, Pittenger M (2005) Mesenchymal stem cells: progress toward promise. Cytotherapy 7(1):36–45

    PubMed  Google Scholar 

  108. Majumdar MK, Thiede MA, Haynesworth SE, Bruder SP, Gerson SL (2000) Human marrow-derived mesenchymal stem cells (MSCs) express hematopoietic cytokines and support long-term hematopoiesis when differentiated toward stromal and osteogenic lineages. J Hematother Stem Cell Res 9(6):841–848

    PubMed  CAS  Google Scholar 

  109. Meirelles Lda S, Fontes AM, Covas DT, Caplan AI (2009) Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev 20(5–6):419–427

    PubMed  Google Scholar 

  110. Moretti P, Hatlapatka T, Marten D, Lavrentieva A, Majore I, Hass R, Kasper C (2010) Mesenchymal stromal cells derived from human umbilical cord tissues: primitive cells with potential for clinical and tissue engineering applications. Adv Biochem Eng Biotechnol 123:29–54. doi:10.1007/10_2009_15

    PubMed  CAS  Google Scholar 

  111. Parekkadan B, Milwid JM (2010) Mesenchymal stem cells as therapeutics. Annu Rev Biomed Eng 12:87–117. doi:10.1146/annurev-bioeng-070909-105309

    PubMed  CAS  Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andres Hilfiker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hilfiker, A., Kasper, C., Hass, R. et al. Mesenchymal stem cells and progenitor cells in connective tissue engineering and regenerative medicine: is there a future for transplantation?. Langenbecks Arch Surg 396, 489–497 (2011). https://doi.org/10.1007/s00423-011-0762-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00423-011-0762-2

Keywords

Navigation