Skip to main content
Log in

The effects of dynamic loading on the intervertebral disc

  • Review Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

An Erratum to this article was published on 01 June 2011

Abstract

Loading is important to maintain the balance of matrix turnover in the intervertebral disc (IVD). Daily cyclic diurnal assists in the transport of large soluble factors across the IVD and its surrounding circulation and applies direct and indirect stimulus to disc cells. Acute mechanical injury and accumulated overloading, however, could induce disc degeneration. Recently, there is more information available on how cyclic loading, especially axial compression and hydrostatic pressure, affects IVD cell biology. This review summarises recent studies on the response of the IVD and stem cells to applied cyclic compression and hydrostatic pressure. These studies investigate the possible role of loading in the initiation and progression of disc degeneration as well as quantifying a physiological loading condition for the study of disc degeneration biological therapy. Subsequently, a possible physiological/beneficial loading range is proposed. This physiological/beneficial loading could provide insight into how to design loading regimes in specific system for the testing of various biological therapies such as cell therapy, chemical therapy or tissue engineering constructs to achieve a better final outcome. In addition, the parameter space of ‘physiological’ loading may also be an important factor for the differentiation of stem cells towards most ideally ‘discogenic’ cells for tissue engineering purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Adams MA, Dolan P, Hutton WC, Porter RW (1990) Diurnal changes in spinal mechanics and their clinical significance. J Bone Joint Surg Br 72(2):266–270

    PubMed  CAS  Google Scholar 

  2. Adams MA, Roughley PJ (2006) What is intervertebral disc degeneration, and what causes it? Spine (Philadelphia, PA, 1976) 31(18):2151–2161. doi:10.1097/01.brs.0000231761.73859.2c

    Article  Google Scholar 

  3. Angele P, Yoo JU, Smith C, Mansour J, Jepsen KJ, Nerlich M, Johnstone B (2003) Cyclic hydrostatic pressure enhances the chondrogenic phenotype of human mesenchymal progenitor cells differentiated in vitro. J Orthop Res 21(3):451–457. doi:10.1016/S0736-0266(02)00230-9

    Article  PubMed  CAS  Google Scholar 

  4. Ariga K, Yonenobu K, Nakase T, Hosono N, Okuda S, Meng W, Tamura Y, Yoshikawa H (2003) Mechanical stress-induced apoptosis of endplate chondrocytes in organ-cultured mouse intervertebral discs: an ex vivo study. Spine (Philadelphia, PA, 1976) 28(14):1528–1533. doi:10.1097/00007632-200307150-00010

    Google Scholar 

  5. Baer AE, Laursen TA, Guilak F, Setton LA (2003) The micromechanical environment of intervertebral disc cells determined by a finite deformation, anisotropic, and biphasic finite element model. J Biomech Eng 125(1):1–11. doi:10.1115/1.1532790

    Article  PubMed  Google Scholar 

  6. Battié MC, Videman T, Kaprio J, Gibbons LE, Gill K, Manninen H, Saarela J, Peltonen L (2009) The Twin Spine Study: contributions to a changing view of disc degeneration. Spine J 9(1):47–59. doi:10.1016/j.spinee.2008.11.011

    Article  PubMed  Google Scholar 

  7. Baumgartner L, Arnhold S, Brixius K, Addicks K, Bloch W (2010) Human mesenchymal stem cells: influence of oxygen pressure on proliferation and chondrogenic differentiation in fibrin glue in vitro. J Biomed Mater Res A 93(3):930–940. doi:10.1002/jbm.a.32577

    PubMed  Google Scholar 

  8. Benallaoua M, Richette P, François M, Tsagris L, Revel M, Corvol M, Poiraudeau S, Savouret JF, Rannou F (2006) Modulation of proteoglycan production by cyclic tensile stretch in intervertebral disc cells through a post-translational mechanism. Biorheology 43(3-4):303–310

    PubMed  Google Scholar 

  9. Benneker LM, Heini PF, Alini M, Anderson SE, Ito K (2005) 2004 young investigator award winner: vertebral endplate marrow contact channel occlusions and intervertebral disc degeneration. Spine (Philadelphia, PA, 1976) 30(2):167–173. doi:10.1097/01.brs.0000150833.93248.09

  10. Bongers PM, Hulshof CT, Dijkstra L, Boshuizen HC, Groenhout HJ, Valken E (1990) Back pain and exposure to whole body vibration in helicopter pilots. Ergonomics 33(8):1007–1026. doi:10.1080/00140139008925309

    Article  PubMed  CAS  Google Scholar 

  11. Bowman CL, Lohr JW (1996) Mechanotransducing ion channels in C6 glioma cells. Glia 18(3):161–176. doi:10.1002/(SICI)1098-1136(199611)18:3161GLIA13.0.CO;2-2

    Article  PubMed  CAS  Google Scholar 

  12. Boyd LM, Richardson WJ, Chen J, Kraus VB, Tewari A, Setton LA (2005) Osmolarity regulates gene expression in intervertebral disc cells determined by gene array and real-time quantitative RT-PCR. Ann Biomed Eng 33(8):1071–1077. doi:10.1007/s10439-005-5775-y

    Article  PubMed  Google Scholar 

  13. Brisby H, Wei AQ, Molloy T, Chung SA, Murrell GA, Diwan AD (2010) The effect of running exercise on intervertebral disc extracellular matrix production in a rat model. Spine (Philadelphia, PA, 1976) 35(15):1429–1436. doi:10.1097/BRS.0b013e3181e0f5bc

    Article  Google Scholar 

  14. Campbell JJ, Lee DA, Bader DL (2006) Dynamic compressive strain influences chondrogenic gene expression in human mesenchymal stem cells. Biorheology 43(3–4):455–470. doi:10.1016/j.bbrc.2008.09.154

    PubMed  Google Scholar 

  15. Caplan AI (1991) Mesenchymal stem cells. J Orthop Res 9(5):641–650. doi:10.1002/jor.1100090504

    Article  PubMed  CAS  Google Scholar 

  16. Carter DR, Blenman PR, Beaupré GS (1988) Correlations between mechanical stress history and tissue differentiation in initial fracture healing. J Orthop Res 6(5):736–748. doi:10.1002/jor.1100060517

    Article  PubMed  CAS  Google Scholar 

  17. Chan SCW, Gantenbein-Ritter B, Leung VY, Chan D, Cheung KM, Ito K (2010) Cryopreserved intervertebral disc with injected bone marrow-derived stromal cells: a feasibility study using organ culture. Spine J 10(6):486–496. doi:10.1016/j.spinee.2009.12.019

    Article  PubMed  Google Scholar 

  18. Chen J, Baer AE, Paik PY, Yan W, Setton LA (2002) Matrix protein gene expression in intervertebral disc cells subjected to altered osmolarity. Biochem Biophys Res Commun 293(3):932–938. doi:10.1016/S0006-291X(02)00314-5

    Article  PubMed  CAS  Google Scholar 

  19. Ching CT, Chow DH, Yao FY, Holmes AD (2004) Changes in nuclear composition following cyclic compression of the intervertebral disc in an in vivo rat-tail model. Med Eng Phys 26(7):587–594. doi:10.1016/j.medengphy.2004.03.006

    Article  PubMed  Google Scholar 

  20. Crevensten G, Walsh AJ, Ananthakrishnan D, Page P, Wahba GM, Lotz JC, Berven S (2004) Intervertebral disc cell therapy for regeneration: mesenchymal stem cell implantation in rat intervertebral discs. Ann Biomed Eng 32(3):430–434. doi:10.1023/B:ABME.0000017545.84833.7c

    Article  PubMed  Google Scholar 

  21. Elder SH, Fulzele KS, McCulley WR (2005) Cyclic hydrostatic compression stimulates chondroinduction of C3H/10T1/2 cells. Biomech Model Mechanobiol 3(3):141–146. doi:10.1007/s10237-004-0058-3

    Article  PubMed  CAS  Google Scholar 

  22. Elder SH, Goldstein SA, Kimura JH, Soslowsky LJ, Spengler DM (2001) Chondrocyte differentiation is modulated by frequency and duration of cyclic compressive loading. Ann Biomed Eng 29(6):476–482. doi:10.1114/1.1376696

    Article  PubMed  CAS  Google Scholar 

  23. Elder SH, Kimura JH, Soslowsky LJ, Lavagnino M, Goldstein SA (2000) Effect of compressive loading on chondrocyte differentiation in agarose cultures of chick limb-bud cells. J Orthop Res 18(1):78–86. doi:10.1002/jor.1100180112

    Article  PubMed  CAS  Google Scholar 

  24. Ferguson SJ, Ito K, Nolte LP (2004) Fluid flow and convective transport of solutes within the intervertebral disc. J Biomech 37(2):213–221. doi:10.1016/S0021-9290(03)00250-1

    Article  PubMed  Google Scholar 

  25. Finger AR, Sargent CY, Dulaney KO, Bernacki SH, Loboa EG (2007) Differential effects on messenger ribonucleic acid expression by bone marrow-derived human mesenchymal stem cells seeded in agarose constructs due to ramped and steady applications of cyclic hydrostatic pressure. Tissue Eng 13(6):1151–1158. doi:10.1089/ten.2006.0290

    Article  PubMed  CAS  Google Scholar 

  26. Freeman PM, Natarajan RN, Kimura JH, Andriacchi TP (1994) Chondrocyte cells respond mechanically to compressive loads. J Orthop Res 12(3):311–320. doi:10.1002/jor.1100120303

    Article  PubMed  CAS  Google Scholar 

  27. Gajghate S, Hiyama A, Shah M, Sakai D, Anderson DG, Shapiro IM, Risbud MV (2009) Osmolarity and intracellular calcium regulate aquaporin2 expression through TonEBP in nucleus pulposus cells of the intervertebral disc. J Bone Miner Res 24(6):992–1001. doi:10.1359/jbmr.090103

    Article  PubMed  CAS  Google Scholar 

  28. Gantenbein B, Grünhagen T, Lee CR, van Donkelaar CC, Alini M, Ito K (2006) An in vitro organ culturing system for intervertebral disc explants with vertebral endplates: a feasibility study with ovine caudal discs. Spine (Philadelphia, PA, 1976) 31(23):2665–2673. doi:10.1097/01.brs.0000244620.15386.df

    Article  Google Scholar 

  29. Gantenbein-Ritter B, Benneker LM, Alini M, Grad S (2011) Differential response of human bone marrow stromal cells to either TGF-β (1) or rhGDF-5. Eur Spine J. doi:10.1007/s00586-010-1619-z

  30. Gilson A, Dreger M, Urban JP (2010) Differential expression levels of cytokeratin 8 in cells of the bovine nucleus pulposus complicates the search for specific intervertebral disc cell markers. Arthritis Res Ther 12(1):R24. doi:10.1186/ar2931

    Article  PubMed  CAS  Google Scholar 

  31. Gokorsch S, Nehring D, Grottke C, Czermak P (2004) Hydrodynamic stimulation and long term cultivation of nucleus pulposus cells: a new bioreactor system to induce extracellular matrix synthesis by nucleus pulposus cells dependent on intermittent hydrostatic pressure. Int J Artif Organs 27(11):962–970

    PubMed  CAS  Google Scholar 

  32. Grad S, Rutges J, Creemers LB, Büttner A, Milz S, Alini M (2011) Differential gene expression of human nucleus pulposus cells and articular chondrocytes: what defines the intervertebral disc cell phenotype? In: Proceedings of the 57th annual meeting of the ORS, 13–16 January, Long Beach, CA

  33. Guilak F, Ratcliffe A, Mow VC (1995) Chondrocyte deformation and local tissue strain in articular cartilage: a confocal microscopy study. J Orthop Res 13(3):410–421. doi:10.1002/jor.1100130315

    Article  PubMed  CAS  Google Scholar 

  34. Hadjipavlou AG, Tzermiadianos MN, Bogduk N, Zindrick MR (2008) The pathophysiology of disc degeneration: a critical review. J Bone Joint Surg Br 90(10):1261–1270. doi:10.1302/0301-620X.90B10.20910

    Article  PubMed  CAS  Google Scholar 

  35. Hall AC (1995) Volume-sensitive taurine transport in bovine articular chondrocytes. J Physiol 484(Pt 3):755–766

    PubMed  CAS  Google Scholar 

  36. Handa T, Ishihara H, Ohshima H, Osada R, Tsuji H, Obata K (1997) Effects of hydrostatic pressure on matrix synthesis and matrix metalloproteinase production in the human lumbar intervertebral disc. Spine (Philadelphia, PA, 1976) 22(10):1085–1091

    Article  CAS  Google Scholar 

  37. Haschtmann D, Stoyanov JV, Ferguson SJ (2006) Influence of diurnal hyperosmotic loading on the metabolism and matrix gene expression of a whole-organ intervertebral disc model. J Orthop Res 24(10):1957–1966. doi:10.1002/jor.20243

    Article  PubMed  CAS  Google Scholar 

  38. Holzwarth C, Vaegler M, Gieseke F, Pfister SM, Handgretinger R, Kerst G, Muller I (2010) Low physiologic oxygen tensions reduce proliferation and differentiation of human multipotent mesenchymal stromal cells. BMC Cell Biol 11(1):11. doi:10.1186/1471-2121-11-11

    Article  PubMed  CAS  Google Scholar 

  39. Huang CY, Gu WY (2008) Effects of mechanical compression on metabolism and distribution of oxygen and lactate in intervertebral disc. J Biomech 41(6):1184–1196. doi:10.1016/j.jbiomech.2008.02.002

    Article  PubMed  Google Scholar 

  40. Huang CY, Hagar KL, Frost LE, Sun Y, Cheung HS (2004) Effects of cyclic compressive loading on chondrogenesis of rabbit bone-marrow derived mesenchymal stem cells. Stem Cells 22(3):313–323. doi:10.1634/stemcells.22-3-313

    Article  PubMed  CAS  Google Scholar 

  41. Huang CY, Reuben PM, Cheung HS (2005) Temporal expression patterns and corresponding protein inductions of early responsive genes in rabbit bone marrow-derived mesenchymal stem cells under cyclic compressive loading. Stem Cells 23(8):1113–1121. doi:10.1634/stemcells.2004-0202

    Article  PubMed  CAS  Google Scholar 

  42. Hutton WC, Elmer WA, Boden SD, Hyon S, Toribatake Y, Tomita K, Hair GA (1999) The effect of hydrostatic pressure on intervertebral disc metabolism. Spine (Philadelphia, PA, 1976) 24(15):1507–1515

    Article  CAS  Google Scholar 

  43. Hutton WC, Elmer WA, Bryce LM, Kozlowska EE, Boden SD, Kozlowski M (2001) Do the intervertebral disc cells respond to different levels of hydrostatic pressure? Clin Biomech 16(9):728–734. doi:10.1016/S0268-0033(01)00080-8

    Article  CAS  Google Scholar 

  44. Huwkins DWL (1988) Disc structure and function. In: Ghosh P (ed) The biology of the intervertebral disc. CRC Press, Boca Raton, FL

    Google Scholar 

  45. Illien-Jünger S, Gantenbein-Ritter B, Grad S, Lezuo P, Ferguson SJ, Alini M, Ito K (2010) The combined effects of limited nutrition and high-frequency loading on intervertebral discs with endplates. Spine (Philadelphia, PA, 1976) 35(19):1744–1752. doi:10.1097/BRS.0b013e3181c48019

    Article  Google Scholar 

  46. Ishihara H, McNally DS, Urban JP, Hall AC (1996) Effects of hydrostatic pressure on matrix synthesis in different regions of the intervertebral disk. J Appl Physiol 80(3):839–846

    PubMed  CAS  Google Scholar 

  47. Janmey PA (1998) The cytoskeleton and cell signaling: component localization and mechanical coupling. Physiol Rev 78(3):763–781

    PubMed  CAS  Google Scholar 

  48. Jung Y, Kim SH, Kim YH, Kim SH (2009) The effects of dynamic and three-dimensional environments on chondrogenic differentiation of bone marrow stromal cells. Biomed Mater 4(5):055009. doi:10.1088/1748-6041/4/5/055009

    Article  PubMed  CAS  Google Scholar 

  49. Kasra M, Goel V, Martin J, Wang ST, Choi W, Buckwalter J (2003) Effect of dynamic hydrostatic pressure on rabbit intervertebral disc cells. J Orthop Res 21(4):597–603. doi:10.1016/S0736-0266(03)00027-5

    Article  PubMed  Google Scholar 

  50. Kasra M, Merryman WD, Loveless KN, Goel VK, Martin JD, Buckwalter JA (2006) Frequency response of pig intervertebral disc cells subjected to dynamic hydrostatic pressure. J Orthop Res 24(10):1967–1973. doi:10.1002/jor.20253

    Article  PubMed  Google Scholar 

  51. Katz MM, Hargens AR, Garfin SR (1986) Intervertebral disc nutrition. Diffusion versus convection. Clin Orthop Relat Res 210:243–245

    Google Scholar 

  52. Kelly DJ, Jacobs CR (2010) The role of mechanical signals in regulating chondrogenesis and osteogenesis of mesenchymal stem cells. Birth Defects Res C Embryo Today 90(1):75–85. doi:10.1002/bdrc.20173

    Article  PubMed  CAS  Google Scholar 

  53. Kim DH, Kim SH, Heo SJ, Shin JW, Lee SW, Park SA, Shin JW (2009) Enhanced differentiation of mesenchymal stem cells into NP-like cells via 3D co-culturing with mechanical stimulation. J Biosci Bioeng 108(1):63–67. doi:10.1016/j.jbiosc.2009.02.008

    Article  PubMed  CAS  Google Scholar 

  54. Kisiday JD, Frisbie DD, McIlwraith CW, Grodzinsky AJ (2009) Dynamic compression stimulates proteoglycan synthesis by mesenchymal stem cells in the absence of chondrogenic cytokines. Tissue Eng Part A 15(10):2817–2824. doi:10.1089/ten.TEA.2008.0357

    Article  PubMed  CAS  Google Scholar 

  55. Knight MM, de Bravenboer JVB, Lee DA, Osch GJVMV, Weinans H, Bader DL (2002) Cell and nucleus deformation in compressed chondrocyte-alginate constructs: temporal changes and calculation of cell modulus. BBA Gen Subj 1570(1):1–8. doi:10.1016/S0304-4165(02)00144-7

    Article  CAS  Google Scholar 

  56. Korecki CL, Kuo CK, Tuan RS, Iatridis JC (2009) Intervertebral disc cell response to dynamic compression is age and frequency dependent. J Orthop Res 27(6):800–806. doi:10.1002/jor.20814

    Article  PubMed  Google Scholar 

  57. Korecki CL, MacLean JJ, Iatridis JC (2007) Characterization of an in vitro intervertebral disc organ culture system. Eur Spine J 16(7):1029–1037. doi:10.1007/s00586-007-0327-9

    Article  PubMed  Google Scholar 

  58. Korecki CL, MacLean JJ, Iatridis JC (2008) Dynamic compression effects on intervertebral disc mechanics and biology. Spine (Philadelphia, PA, 1976) 33(13):1403–1409. doi:10.1097/BRS.0b013e318175cae7

    Article  Google Scholar 

  59. Korecki CL, Taboas JM, Tuan RS, Iatridis JC (2010) Notochordal cell conditioned medium stimulates mesenchymal stem cell differentiation toward a young nucleus pulposus phenotype. Stem Cell Res Ther 1(2):18. doi:10.1186/scrt18

    Article  PubMed  CAS  Google Scholar 

  60. Kraemer J (1985) Dynamic characteristics of the vertebral column, effects of prolonged loading. Ergonomics 28(1):95–97

    Article  PubMed  CAS  Google Scholar 

  61. Lee CR, Iatridis JC, Poveda L, Alini M (2006) In vitro organ culture of the bovine intervertebral disc: effects of vertebral endplate and potential for mechanobiology studies. Spine (Philadelphia, PA, 1976) 31(5):515–522. doi:10.1097/01.brs.0000201302.59050.72

    Article  Google Scholar 

  62. Lee DA, Knight MM, Bolton JF, Idowu BD, Kayser MV, Bader DL (2000) Chondrocyte deformation within compressed agarose constructs at the cellular and sub-cellular levels. J Biomech 33(1):81–95. doi:10.1016/S0021-9290(99)00160-8

    Article  PubMed  CAS  Google Scholar 

  63. Le Maitre CL, Frain J, Fotheringham AP, Freemont AJ, Hoyland JA (2008) Human cells derived from degenerate intervertebral discs respond differently to those derived from non-degenerate intervertebral discs following application of dynamic hydrostatic pressure. Biorheology 45(5):563–575. doi:10.3233/BIR-2008-0498

    PubMed  CAS  Google Scholar 

  64. Le Maitre CL, Frain J, Millward-Sadler J, Fotheringham AP, Freemont AJ, Hoyland JA (2009) Altered integrin mechanotransduction in human nucleus pulposus cells derived from degenerated discs. Arthritis Rheum 60(2):460–469. doi:10.1002/art.24248

    Article  PubMed  CAS  Google Scholar 

  65. Liu GZ, Ishihara H, Osada R, Kimura T, Tsuji H (2001) Nitric oxide mediates the change of proteoglycan synthesis in the human lumbar intervertebral disc in response to hydrostatic pressure. Spine (Philadelphia, PA, 1976) 26(2):134–141

    Article  CAS  Google Scholar 

  66. Li Z, Kupcsik L, Yao SJ, Alini M, Stoddart MJ (2009) Chondrogenesis of human bone marrow mesenchymal stem cells in fibrin–polyurethane composites. Tissue Eng Part A 15(7):1729–1737. doi:10.1089/ten.tea.2008.0247

    Article  PubMed  CAS  Google Scholar 

  67. Lotz JC, Chin JR (2000) Intervertebral disc cell death is dependent on the magnitude and duration of spinal loading. Spine (Philadelphia, PA, 1976) 25(12):1477–1483

    Article  CAS  Google Scholar 

  68. Lotz JC, Colliou OK, Chin JR, Duncan NA, Liebenberg E (1998) Compression-induced degeneration of the intervertebral disc: an in vivo mouse model and finite-element study. Spine (Philadelphia, PA, 1976) 23(23):2493–2506

    Article  CAS  Google Scholar 

  69. Luo ZJ, Seedhom BB (2007) Light and low-frequency pulsatile hydrostatic pressure enhances extracellular matrix formation by bone marrow mesenchymal cells: an in vitro study with special reference to cartilage repair. Proc Inst Mech Eng H 221(5):499–507. doi:10.1243/09544119JEIM199

    Article  PubMed  CAS  Google Scholar 

  70. MacLean JJ, Lee CR, Alini M, Iatridis JC (2004) Anabolic and catabolic mRNA levels of the intervertebral disc vary with the magnitude and frequency of in vivo dynamic compression. J Orthop Res 22(6):1193–1200. doi:10.1016/j.orthres.2004.04.004

    Article  PubMed  CAS  Google Scholar 

  71. MacLean JJ, Lee CR, Alini M, Iatridis JC (2005) The effects of short-term load duration on anabolic and catabolic gene expression in the rat tail intervertebral disc. J Orthop Res 23(5):1120–1127. doi:10.1016/j.orthres.2005.01.020

    Article  PubMed  CAS  Google Scholar 

  72. MacLean JJ, Lee CR, Grad S, Ito K, Alini M, Iatridis JC (2003) Effects of immobilization and dynamic compression on intervertebral disc cell gene expression in vivo. Spine (Philadelphia, PA, 1976) 28(10):973–981. doi:10.1097/01.BRS.0000061985.15849.A9

    Google Scholar 

  73. Malko JA, Hutton WC, Fajman WA (2002) An in vivo MRI study of the changes in volume (and fluid content) of the lumbar intervertebral disc after overnight bed rest and during an 8-hour walking protocol. J Spinal Disord 15(2):157–163

    Article  Google Scholar 

  74. Markway BD, Tan GK, Brooke G, Hudson JE, Cooper-White JJ, Doran MR (2010) Enhanced chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells in low oxygen environment micropellet cultures. Cell Transplant 19(1):29–42. doi:10.3727/096368909X478560

    Article  PubMed  Google Scholar 

  75. Masuoka K, Michalek AJ, MacLean JJ, Stokes IA, Iatridis JC (2007) Different effects of static versus cyclic compressive loading on rat intervertebral disc height and water loss in vitro. Spine (Philadelphia, PA, 1976) 32(18):1974–1979. doi:10.1097/BRS.0b013e318133d591

    Article  Google Scholar 

  76. McMillan DW, Garbutt G, Adams MA (1996) Effect of sustained loading on the water content of intervertebral discs: implications for disc metabolism. Ann Rheum Dis 55(12):880–887. doi:10.1136/ard.55.12.880

    Article  PubMed  CAS  Google Scholar 

  77. Meyer EG, Buckley CT, Thorpe SD, Kelly DJ (2010) Low oxygen tension is a more potent promoter of chondrogenic differentiation than dynamic compression. J Biomech. doi:10.1016/j.jbiomech.2010.05.020

  78. Minogue BM, Richardson SM, Zeef LA, Freemont AJ, Hoyland JA (2010) Transcriptional profiling of bovine intervertebral disc cells: implications for identification of normal and degenerate human intervertebral disc cell phenotypes. Arthritis Res Ther 12(1):R22. doi:10.1186/ar2929

    Article  PubMed  CAS  Google Scholar 

  79. Miyanishi K, Trindade MC, Lindsey DP, Beaupré GS, Carter DR, Goodman SB, Schurman DJ, Smith RL (2006) Dose- and time-dependent effects of cyclic hydrostatic pressure on transforming growth factor-beta3-induced chondrogenesis by adult human mesenchymal stem cells in vitro. Tissue Eng 12(8):2253–2262. doi:10.1089/ten.2006.12.2253

    Article  PubMed  CAS  Google Scholar 

  80. Miyanishi K, Trindade MC, Lindsey DP, Beaupré GS, Carter DR, Goodman SB, Schurman DJ, Smith RL (2006) Effects of hydrostatic pressure and transforming growth factor-beta 3 on adult human mesenchymal stem cell chondrogenesis in vitro. Tissue Eng 12(6):1419–1428. doi:10.1089/ten.2006.12.1419

    Article  PubMed  CAS  Google Scholar 

  81. Mobasheri A, Carter SD, Martín-Vasallo P, Shakibaei M (2002) Integrins and stretch activated ion channels; putative components of functional cell surface mechanoreceptors in articular chondrocytes. Cell Biol Int 26(1):1–18. doi:10.1006/cbir.2001.0826

    Article  PubMed  CAS  Google Scholar 

  82. Mokhbi Soukane D, Shirazi-Adl A, Urban JP (2009) Investigation of solute concentrations in a 3D model of intervertebral disc. Eur Spine J 18(2):254–262. doi:10.1007/s00586-008-0822-7

    Article  PubMed  CAS  Google Scholar 

  83. Mouw JK, Connelly JT, Wilson CG, Michael KE, Levenston ME (2007) Dynamic compression regulates the expression and synthesis of chondrocyte-specific matrix molecules in bone marrow stromal cells. Stem Cells 25(3):655–663. doi:10.1634/stemcells.2006-0435

    Article  PubMed  CAS  Google Scholar 

  84. Neidlinger-Wilke C, Liedert A, Wuertz K, Buser Z, Rinkler C, Käfer W, Ignatius A, Claes L, Roberts S, Johnson WE (2009) Mechanical stimulation alters pleiotrophin and aggrecan expression by human intervertebral disc cells and influences their capacity to stimulate endothelial migration. Spine (Philadelphia, PA, 1976) 34(7):663–669. doi:10.1097/BRS.0b013e318194e20c

    Article  Google Scholar 

  85. Neidlinger-Wilke C, Wurtz K, Liedert A, Schmidt C, Borm W, Ignatius A, Wilke HJ, Claes L (2005) A three-dimensional collagen matrix as a suitable culture system for the comparison of cyclic strain and hydrostatic pressure effects on intervertebral disc cells. J Neurosurg Spine 2(4):457–465. doi:10.3171/spi.2005.2.4.0457

    Article  PubMed  Google Scholar 

  86. Neidlinger-Wilke C, Würtz K, Urban JP, Börm W, Arand M, Ignatius A, Wilke HJ, Claes LE (2006) Regulation of gene expression in intervertebral disc cells by low and high hydrostatic pressure. Eur Spine J 15(Suppl 3):S372–S378. doi:10.1007/s00586-006-0112-1

    Article  PubMed  Google Scholar 

  87. Ogawa R, Mizuno S, Murphy GF, Orgill DP (2009) The effect of hydrostatic pressure on three-dimensional chondroinduction of human adipose-derived stem cells. Tissue Eng Part A 15(10):2937–2945. doi:10.1089/ten.TEA.2008.0672

    Article  PubMed  CAS  Google Scholar 

  88. Ohshima H, Tsuji H, Hirano N, Ishihara H, Katoh Y, Yamada H (1989) Water diffusion pathway, swelling pressure, and biomechanical properties of the intervertebral disc during compression load. Spine (Philadelphia, PA, 1976) 14(11):1234–1244

    Article  CAS  Google Scholar 

  89. Ohshima H, Urban JP, Bergel DH (1995) Effect of static load on matrix synthesis rates in the intervertebral disc measured in vitro by a new perfusion technique. J Orthop Res 13(1):22–29. doi:10.1002/jor.1100130106

    Article  PubMed  CAS  Google Scholar 

  90. Pelaez D, Huang CY, Cheung HS (2009) Cyclic compression maintains viability and induces chondrogenesis of human mesenchymal stem cells in fibrin gel scaffolds. Stem Cells Dev 18(1):93–102. doi:10.1089/scd.2008.0030

    Article  PubMed  CAS  Google Scholar 

  91. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147. doi:10.1126/science.284.5411.143

    Article  PubMed  CAS  Google Scholar 

  92. Pope MH, Magnusson M, Wilder DG (1998) Low back pain and whole body vibration. Clin Orthop Relat Res 354:241–248. doi:10.1007/BF00377733

    Article  PubMed  Google Scholar 

  93. Potier E, Noailly J, Ito K (2010) Directing bone marrow-derived stromal cell function with mechanics. J Biomech 43(5):807–817. doi:10.1016/j.jbiomech.2009.11.019

    Article  PubMed  CAS  Google Scholar 

  94. Prendergast PJ, Huiskes R, Søballe K (1997) ESB Research Award 1996. Biophysical stimuli on cells during tissue differentiation at implant interfaces. J Biomech 30(6):539–548. doi:10.1016/S0021-9290(96)00140-6

    Article  PubMed  CAS  Google Scholar 

  95. Race A, Broom ND, Robertson P (2000) Effect of loading rate and hydration on the mechanical properties of the disc. Spine (Philadelphia, PA, 1976) 25(6):662–669

    Article  CAS  Google Scholar 

  96. Rannou F, Lee TS, Zhou RH, Chin J, Lotz JC, Mayoux-Benhamou MA, Barbet JP, Chevrot A, Shyy JY (2004) Intervertebral disc degeneration: the role of the mitochondrial pathway in annulus fibrosus cell apoptosis induced by overload. Am J Pathol 164(3):915–924. doi:10.1016/S0002-9440(10)63179-3

    Article  PubMed  CAS  Google Scholar 

  97. Rannou F, Richette P, Benallaoua M, François M, Genries V, Korwin-Zmijowska C, Revel M, Corvol M, Poiraudeau S (2003) Cyclic tensile stretch modulates proteoglycan production by intervertebral disc annulus fibrosus cells through production of nitrite oxide. J Cell Biochem 90(1):148–157. doi:10.1002/jcb.10608

    Article  PubMed  CAS  Google Scholar 

  98. Reza AT, Nicoll SB (2008) Hydrostatic pressure differentially regulates outer and inner annulus fibrosus cell matrix production in 3D scaffolds. Ann Biomed Eng 36(2):204–213. doi:10.1007/s10439-007-9407-6

    Article  PubMed  Google Scholar 

  99. Richardson SM, Walker RV, Parker S, Rhodes NP, Hunt JA, Freemont AJ, Hoyland JA (2006) Intervertebral disc cell-mediated mesenchymal stem cell differentiation. Stem Cells 24(3):707–716. doi:10.1634/stemcells.2005-0205

    Article  PubMed  CAS  Google Scholar 

  100. Rinkler C, Heuer F, Pedro MT, Mauer UM, Ignatius A, Neidlinger-Wilke C (2010) Influence of low glucose supply on the regulation of gene expression by nucleus pulposus cells and their responsiveness to mechanical loading. J Neurosurg Spine 13(4):535–542. doi:10.3171/2010.4.SPINE09713

    Article  PubMed  Google Scholar 

  101. Risbud MV, Albert TJ, Guttapalli A, Vresilovic EJ, Hillibrand AS, Vaccaro AR, Shapiro IM (2004) Differentiation of mesenchymal stem cells towards a nucleus pulposus-like phenotype in vitro: implications for cell-based transplantation therapy. Spine (Philadelphia, PA, 1976) 29(23):2627–2632

    Article  Google Scholar 

  102. Rutges J, Creemers LB, Dhert W, Milz S, Sakai D, Mochida J, Alini M, Grad S (2010) Variations in gene and protein expression in human nucleus pulposus in comparison with annulus fibrosus and cartilage cells: potential associations with aging and degeneration. Osteoarthr Cartil 18(3):416–423. doi:10.1016/j.joca.2009.09.009

    Article  PubMed  CAS  Google Scholar 

  103. Sakai D, Nakai T, Mochida J, Alini M, Grad S (2009) Differential phenotype of intervertebral disc cells: microarray and immunohistochemical analysis of canine nucleus pulposus and anulus fibrosus. Spine (Philadelphia, PA, 1976) 34(14):1448–1456. doi:10.1097/BRS.0b013e3181a55705

    Article  Google Scholar 

  104. Säämänen AM, Puustjärvi K, Ilves K, Lammi M, Kiviranta I, Jurvelin J, Helminen HJ, Tammi M (1993) Effect of running exercise on proteoglycans and collagen content in the intervertebral disc of young dogs. Int J Sports Med 14(1):48–51. doi:10.1055/s-2007-1021145

    Article  PubMed  Google Scholar 

  105. Scherer K, Schünke M, Sellckau R, Hassenpflug J, Kurz B (2004) The influence of oxygen and hydrostatic pressure on articular chondrocytes and adherent bone marrow cells in vitro. Biorheology 41(3–4):323–333

    PubMed  CAS  Google Scholar 

  106. Setton LA, Chen J (2004) Cell mechanics and mechanobiology in the intervertebral disc. Spine (Philadelphia, PA, 1976) 29(23):2710–2723

    Article  Google Scholar 

  107. Setton LA, Chen J (2006) Mechanobiology of the intervertebral disc and relevance to disc degeneration. J Bone Joint Surg Am 88(Suppl 2):52–57

    Article  PubMed  Google Scholar 

  108. Sivan S, Neidlinger-Wilke C, Würtz K, Maroudas A, Urban JP (2006) Diurnal fluid expression and activity of intervertebral disc cells. Biorheology 43(3–4):283–291

    PubMed  CAS  Google Scholar 

  109. Soukane DM, Shirazi-Adl A, Urban JP (2007) Computation of coupled diffusion of oxygen, glucose and lactic acid in an intervertebral disc. J Biomech 40(12):2645–2654. doi:10.1016/j.jbiomech.2007.01.003

    Article  PubMed  Google Scholar 

  110. Stokes IA, Iatridis JC (2004) Mechanical conditions that accelerate intervertebral disc degeneration: overload versus immobilization. Spine (Philadelphia, PA, 1976) 29(23):2724–2732

    Article  Google Scholar 

  111. Szafranski JD, Grodzinsky AJ, Burger E, Gaschen V, Hung H-H, Hunziker EB (2004) Chondrocyte mechanotransduction: effects of compression on deformation of intracellular organelles and relevance to cellular biosynthesis. Osteoarthr Cartil 12(12):937–946. doi:10.1016/j.joca.2004.08.004

    Article  PubMed  Google Scholar 

  112. Terraciano V, Hwang N, Moroni L, Park HB, Zhang Z, Mizrahi J, Seliktar D, Elisseeff J (2007) Differential response of adult and embryonic mesenchymal progenitor cells to mechanical compression in hydrogels. Stem Cells 25(11):2730–2738. doi:10.1634/stemcells.2007-0228

    Article  PubMed  CAS  Google Scholar 

  113. Thorpe SD, Buckley CT, Vinardell T, O’Brien FJ, Campbell VA, Kelly DJ (2008) Dynamic compression can inhibit chondrogenesis of mesenchymal stem cells. Biochem Biophys Res Commun 377(2):458–462. doi:10.1016/j.bbrc.2008.09.154

    Article  PubMed  CAS  Google Scholar 

  114. Urban JP (1993) The effect of physical factors on disk cell metabolism. In: Buckwalter JA, Goldberg VM, Woo SL (eds) Musculoskeletal soft-tissue aging: impact on mobility. Am Acad Orthop Surg Rosemont, IL, pp 391–412

    Google Scholar 

  115. Urban JP (2002) The role of the physicochemical environment in determining disc cell behaviour. Biochem Soc Trans 30(Pt 6):858–864

    PubMed  CAS  Google Scholar 

  116. Urban JP, Hall AC, Gehl KA (1993) Regulation of matrix synthesis rates by the ionic and osmotic environment of articular chondrocytes. J Cell Physiol 154(2):262–270. doi:10.1002/jcp.1041540208

    Article  PubMed  CAS  Google Scholar 

  117. Urban JP, Holm S, Maroudas A, Nachemson A (1982) Nutrition of the intervertebral disc: effect of fluid flow on solute transport. Clin Orthop Relat Res 170:296–302

    Google Scholar 

  118. Urban JP, Maroudas A (1981) Swelling of the intervertebral disc in vitro. Connect Tissue Res 9:1–10

    Article  PubMed  CAS  Google Scholar 

  119. Urban JPG, McMullin J, Maroudas A, Holm S (1982) The effect of mechanical stress on fluid and solute transport in the intervertebral disc. Int J Microcirc 1(3):221

    Google Scholar 

  120. van der Werf M, Lezuo P, Maissen O, van Donkelaar CC, Ito K (2007) Inhibition of vertebral endplate perfusion results in decreased intervertebral disc intranuclear diffusive transport. J Anat 211(6):769–774. doi:10.1111/j.1469-7580.2007.00816.x

    Article  PubMed  Google Scholar 

  121. Wagner DR, Lindsey DP, Li KW, Tummala P, Chandran SE, Smith RL, Longaker MT, Carter DR, Beaupre GS (2008) Hydrostatic pressure enhances chondrogenic differentiation of human bone marrow stromal cells in osteochondrogenic medium. Ann Biomed Eng 36(5):813–820. doi:10.1007/s10439-008-9448-5

    Article  PubMed  Google Scholar 

  122. Walsh AJ, Lotz JC (2004) Biological response of the intervertebral disc to dynamic loading. J Biomech 37(3):329–337. doi:10.1016/S0021-9290(03)00290-2

    Article  PubMed  Google Scholar 

  123. Wang DL, Jiang SD, Dai LY (2007) Biologic response of the intervertebral disc to static and dynamic compression in vitro. Spine (Philadelphia, PA, 1976) 32(23):2521–2528. doi:10.1097/BRS.0b013e318158cb61

    Article  Google Scholar 

  124. Wenger KH, Woods JA, Holecek A, Eckstein EC, Robertson JT, Hasty KA (2005) Matrix remodeling expression in anulus cells subjected to increased compressive load. Spine (Philadelphia, PA, 1976) 30(10):1122–1126

    Article  Google Scholar 

  125. White TL, Malone TR (1990) Effects of running on intervertebral disc height. J Orthop Sports Phys Ther 12(4):139–146

    PubMed  CAS  Google Scholar 

  126. Wuertz K, Godburn K, Iatridis JC (2009) MSC response to pH levels found in degenerating intervertebral discs. Biochem Biophys Res Commun 379(4):824–829. doi:10.1016/j.bbrc.2008.12.145

    Article  PubMed  CAS  Google Scholar 

  127. Wuertz K, Godburn K, MacLean JJ, Barbir A, Donnelly JS, Roughley PJ, Alini M, Iatridis JC (2009) In vivo remodeling of intervertebral discs in response to short- and long-term dynamic compression. J Orthop Res 27(9):1235–1242. doi:10.1002/jor.20867

    Article  PubMed  Google Scholar 

  128. Wuertz K, Godburn K, Neidlinger-Wilke C, Urban J, Iatridis JC (2008) Behavior of mesenchymal stem cells in the chemical microenvironment of the intervertebral disc. Spine (Philadelphia, PA, 1976) 33(17):1843–1849. doi:10.1097/BRS.0b013e31817b8f53

    Article  Google Scholar 

  129. Wuertz K, Urban JP, Klasen J, Ignatius A, Wilke HJ, Claes L, Neidlinger-Wilke C (2007) Influence of extracellular osmolarity and mechanical stimulation on gene expression of intervertebral disc cells. J Orthop Res 25(11):1513–1522. doi:10.1002/jor.20436

    Article  PubMed  CAS  Google Scholar 

  130. Yao H, Gu WY (2006) Physical signals and solute transport in human intervertebral disc during compressive stress relaxation: 3D finite element analysis. Biorheology 43(3–4):323–335

    PubMed  Google Scholar 

  131. Zeiter S, Lezuo P, Ito K (2009) Effect of TGF beta1, BMP-2 and hydraulic pressure on chondrogenic differentiation of bovine bone marrow mesenchymal stromal cells. Biorheology 46(1):45–55. doi:10.3233/BIR-2009-0520

    PubMed  CAS  Google Scholar 

Download references

Conflict of interest

None of the authors has any potential conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Gantenbein-Ritter.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00586-011-1853-z

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, S.C.W., Ferguson, S.J. & Gantenbein-Ritter, B. The effects of dynamic loading on the intervertebral disc. Eur Spine J 20, 1796–1812 (2011). https://doi.org/10.1007/s00586-011-1827-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-011-1827-1

Keywords

Navigation