Skip to main content

Advertisement

Log in

Osmolarity Regulates Gene Expression in Intervertebral Disc Cells Determined by Gene Array and Real-Time Quantitative RT-PCR

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Intervertebral disc (IVD) cells experience a broad range of physicochemical stimuli under physiologic conditions, including alterations in their osmotic environment. Cellular responses to altered osmolarity have been documented at the transcriptional and post-translational level, but mainly for extracellular matrix proteins. In this study, the gene expression profile of human IVD cells was quantified with gene array technology following exposure to increased osmolarity in order to capture the biological responses for a broad set of targets. A total of 42 genes were identified in IVD cells as significantly changed following culture under hyper-osmotic conditions. Gene expression patterns were verified using RT-PCR. Genes identified in this study include those related to cytoskeleton remodeling and stabilization (ephrin-B2, muskelin), as well as membrane transport (ion transporter SLC21A12, osmolyte transporter SLC5A3, monocarboxylic acid SLC16A6). An unexpected finding was the differential regulation of the gene for the neurotrophin, brain-derived neurotrophic factor, by hyper-osmotic stimuli that suggests a capability of IVD cells to respond to physicochemical stimuli with factors that may regulate discogenic pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Apfel, S. C. Neurotrophic factors and pain. Clin. J. Pain 16:S7–S11, 2000.

    PubMed  Google Scholar 

  2. Baer, A. E., J. Y. Wang, V. B. Kraus, and L. A. Setton. Collagen gene expression and mechanical properties of intervertebral disc cell-alginate cultures. J. Orthop. Res. 19:2–10, 2001.

    Article  PubMed  Google Scholar 

  3. Bakay, M., Y.-W. Chen, R. Borup, P. Zhao, K. Nagaraju, and E. P. Hoffman. Sources of variability and effect of experimental approach on expression profiling data interpretation. BMC Bioinform. 3:2002.

  4. Battaglia, A. A., K. Sehayek, J. Grist, S. B. McMahon, and I. Gavazzi. Eph-b receptors and ephrin-b ligands regulate spinal sensory connectivity and modulate pain processing. Nat. Neurosci 6:339–340, 2003.

    Article  PubMed  Google Scholar 

  5. Bayliss, M. T., B. Johnstone, and J. P. O’Brien. Proteoglycan synthesis in the human intervertebral disc. Variation with age, region and pathology. Spine 13:972–981, 1988.

    PubMed  Google Scholar 

  6. Bayliss, M. T., J. P. Urban, B. Johnstone, and S. Holm. In vitro method for measuring synthesis rates in intervertebral disc. J. Orthop. Res. 4:10–17, 1986.

    Article  PubMed  Google Scholar 

  7. Bennett, D. L. H. Neurotrophic factors: Important regulators of nociceptive function. Neurosci. Update 7:13–17, 2001.

    Google Scholar 

  8. Bush, P. G., and A. C. Hall. The osmotic sensitivity of isolated and in situ bovine articular chondrocytes. J. Orthop. Res. 19:768–778, 2001.

    Article  PubMed  Google Scholar 

  9. Caterson, B., C. R. Flannery, C. E. Hughes, and C. B. Little. Mechanisms involved in cartilage proteoglycan catabolism. Matrix Biol. 19:333–244, 2000.

    Article  PubMed  Google Scholar 

  10. Chen, J., A. E. Baer, P. Y. Paik, W. Yan, and L. A. Setton. Matrix protein gene expression in intervertebral disc cells subjected to altered osmolarity. Biochem. Biophys. Res. Commun. 293:932–938, 2002.

    Article  PubMed  Google Scholar 

  11. Chiba, K., G. B. J. Andersson, K. Masuda, and E. J.-M. A. Thonar. Metabolism of the extracellular matrix formed by intervertebral disc cells cultured in alginate. Spine 22:2885–2893, 1997.

    Article  PubMed  Google Scholar 

  12. Cutforth, T., and C. J. Harrison. Ephs and ephrins close ranks. Trends Neurosci. 25:332–334, 2002.

    Article  PubMed  Google Scholar 

  13. Dodelet, V. C., and E. B. Pasquale. Eph receptors and ephrin ligands: Embryogenesis to tumorigenesis. Oncogene 19:5614–5619, 2000.

    Article  PubMed  Google Scholar 

  14. Erickson, G. R., L. G. Alexopoulos, and F. Guilak. Hyper-osmotic stress induces volume change and calcium transients in chondrocytes by transmembrane, phospholipid, and G-protein pathways. J. Biomech. 34:1527–1535, 2001.

    Article  PubMed  Google Scholar 

  15. Gradient, R. A., and U. H. Otten. Interleukin-6 (IL-6) - a molecule with both beneficial and destructive potentials. Prog. Neurobiol. 52:379–390, 1997.

    Article  PubMed  Google Scholar 

  16. Ha, S. O., J. K. Kim, H. S. Hong, D. S. Kim, and H. J. Cho. Expression of brain-derived neurotrophic factor in rat dorsal root ganglia, spinal cord and gracile nuclei in experimental models of neuropathic pain. Neuroscience 107:301–309, 2001.

    Article  PubMed  Google Scholar 

  17. Han, E.-S., Y. Wu, R. McCarter, J. F. Nelson, A. Richardson, and S. G. Hilsenbeck. Reproducibility, sources of variability, pooling, and sample size: Important considerations for the design of high-density oligonucleotide array experiments. J. Gerontol. Biol. Sci. 59A:306–315, 2004.

    Google Scholar 

  18. Hirano, T., and T. Kishimoto. “Interleukin-6.” In: Peptide Growth Factors and Their Receptors, edited by Sporn, M. B. and A. B. Roberts. New York: Springer-Verlag, 1991, pp. 633–665.

    Google Scholar 

  19. Holder, N., and R. Klein. Eph receptors and ephrins: Effectors of morphogenesis. Development 126:2033–2044, 1999.

    PubMed  Google Scholar 

  20. Hopewell, B., and J. P. G. Urban. Adaptation of articular chondrocytes to changes in osmolality. Biorheology 20:73–77, 2003.

    Google Scholar 

  21. Ishihara, H., K. Warensjo, S. Roberts and J. P. G. Urban. Proteoglycan synthesis in the intervertebral disk nucleus: The role of extracellular osmolality. Am. J. Physiol. 272:C1499–C1506, 1997.

    PubMed  Google Scholar 

  22. Kuno, K., N. Kanada, E. Nakashima, F. Fujiki, F. Ichimura, and K. Matsushima. Molecular cloning of a gene encoding a new type of metalloproteinase-disintegrin family protein with thrombospondin motiffs as an inflammation associated gene. J. Biol. Chem. 272:556–562, 1997.

    Article  PubMed  Google Scholar 

  23. Lang, F., G. L. Busch, M. Ritter, H. Volkl, S. Waldegger, E. Gulbins, and D. Haussinger. Functional significance of cell volume regulatory mechanisms. Physiol. Rev. 78:247–306, 1998.

    PubMed  Google Scholar 

  24. Livak, K. J., and T. D. Schmittgen. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods 25:402–408, 2001.

    Article  PubMed  Google Scholar 

  25. Maldonado, B. A., and J. Theodore R. Oegema. Initial characterization of the metabolism of intervertebral disc cells encapsulated in microspheres. J. Orthop. Res. 10:677–690, 1992.

    Article  PubMed  Google Scholar 

  26. Mannion, R. J., M. Costigan, I. Decosterd, F. Amaya, Q. P. Ma, J. C. Holstege, R. R. Ji, A. Acheson, R. M. Lindsay, A. A. Wilkinson, and C. J. Woolf. Neurotrophins: Peripherirally and centrally acting modulators of tactile stimulus-induced inflammatory pain hypersensitivity. Proc. Natl. Acad. Sci. U.S.A. 96:9385–9390, 1999.

    Article  PubMed  Google Scholar 

  27. Miletic, G., and V. Miletic. Increase in the concentration of brain derived neurotrophic factor in the lumbar spinal dorsal horn are associated with pain behavior following chronic constriction injury in rats. Neurosci. Lett. 319:137–140, 2002.

    Article  PubMed  Google Scholar 

  28. Millan, M. J. The induction of pain: An integrative review. Prog. Neurobiol. 57:1–164, 1999.

    Article  PubMed  Google Scholar 

  29. O’Neill, W. C. Physiological significance of volume-regulatory transporters. Am. J. Physiol. Cell Physiol. 45:C995–C1011, 1999.

    Google Scholar 

  30. Obata, K., H. Tsujino, H. Yamanaka, D. Yi, T. Fukuoka, N. Hashimoto, K. Yonenobu, H. Yoshikawa, and K. Noguchi. Expression of neurotrophic factors in the dorsal root ganglion in a rat model of lumbar disc herniation. Pain 99:121–132, 2002.

    Article  PubMed  Google Scholar 

  31. Oegema, T. R. Biochemistry of the intervertebral disc. Clin. Sports Med. 12:419–439, 1993.

    PubMed  Google Scholar 

  32. Pritchard, S., G. R. Erickson, and F. Guilak. Hyperosmotically induced volume change and calcium signalling in intervertebral disc cells: The role of the actin cytoskeleton. Biophys. J. 83:2502–2510, 2002.

    PubMed  Google Scholar 

  33. Pritchard, S., and F. Guilak. The role of F-actin in hypo-osmotically induced cell volume change and calcium signaling in anulus fibrosus cells. Ann. Biomed. Eng. 32:103–111, 2004.

    Article  PubMed  Google Scholar 

  34. Rajeevan, M. S., S. D. Vernon, N. Taysavang, and E. R. Unger. Validation of array-based gene expression profiles by real-time (kinetic) RT-PCR. J. Mol. Diagnostics 3:26–31, 2001.

    Google Scholar 

  35. Specchia, N., A. Pagnotta, A. Toesca, and F. Greco. Cytokines and growth factors in the protruded intervertebral disc of the lumbar spine. Eur. Spine J. 11:145–151, 2002.

    Article  PubMed  Google Scholar 

  36. Urban, J. P. G. “The effect of physical factors on disk cell metabolism.” In: Musculoskeletal Soft-Tissue Aging: Impact on Mobility, edited by Buckwalter, J. A., Goldberg, V. M., and Woo, S. L.-Y. Rosemont. Illinois: AAOS, 1993, pp. 391–412.

    Google Scholar 

  37. Urban, J. P. G. The role of the physicochemical environment in determining disc cell behavior. Biochem. Soc. Trans. 30:858–864, 2002.

    Article  PubMed  Google Scholar 

  38. Urban, J. P. G., S. Roberts, and J. R. Ralphs. The nucleus of the intervertebral disc from development to degeneration. Am. Zool. 40:53–61, 2000.

    Google Scholar 

  39. Waldegger, S., and F. Lang. Cell volume and gene expression. J. Membr. Biol. 162:95–100, 1998.

    Article  PubMed  Google Scholar 

  40. Wang, J. Y., A. E. Baer, V. B. Kraus, and L. A. Setton. Intervertebral disc cells exhibit differences in gene expression in alginate and monolayer culture. Spine 26:1747–1751, 2001.

    Article  PubMed  Google Scholar 

  41. Yuen, T., E. Wurmbach, R. L. Pfeffer, B. J. Ebersole, and S. C. Sealfon. Accuracy and calibration of commercial oligonucleotide and custom cdna microarrays. Nucl. Acids Res. 30:e48, 2002.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boyd, L.M., Richardson, W.J., Chen, J. et al. Osmolarity Regulates Gene Expression in Intervertebral Disc Cells Determined by Gene Array and Real-Time Quantitative RT-PCR. Ann Biomed Eng 33, 1071–1077 (2005). https://doi.org/10.1007/s10439-005-5775-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-005-5775-y

Keywords

Navigation