Skip to main content
Log in

Biomechanical in vitro evaluation of the complete porcine spine in comparison with data of the human spine

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

The purpose of this study was to provide quantitative biomechanical properties of the whole porcine spine and compare them with data from the literature on the human spine. Complete spines were sectioned into single joint segments and tested in a spine tester with pure moments in the three main anatomical planes. Range of motion, neutral zone and stiffness parameters of the spine were determined in flexion/extension, right/left lateral bending and left/right axial rotation. Comparison with data of the human spine reported in the literature showed that certain regions of the porcine spine exhibit greater similarities than others. The cervical area of C1–C2 and the upper and middle thoracic sections exhibited the most similarities. The lower thoracic and the lumbar area are qualitatively similar to the human spine. The remaining cervical section from C3 to C7 appears to be less suitable as a model. Based on the biomechanical similarities of certain regions of the porcine and human spines demonstrated by this study results, it appears that the use of the porcine spine could be an alternative to human specimens in the field of in vitro research. However, it has to be emphasized that the porcine spine is not a suitable biomechanics surrogate for all regions of the human spinal column, and it should be carefully considered whether other specimens, for example from the calf or sheep spine, represent a better alternative for a specific scientific question. It should be noted that compared with human specimens each animal model always only represents a compromise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Akbay A, Bozkurt G, Ilgaz O, Palaoglu S, Akalan N, Benzel EC (2008) A demineralized calf vertebra model as an alternative to classic osteoporotic vertebra models for pedicle screw pullout studies. Eur Spine J 17:468–473

    Article  PubMed  Google Scholar 

  2. Asazuma T, Stokes IA, Moreland, Suzuki N (1990) Intersegmental spinal flexibility with lumbosacral instrumentation. An in vitro biomechanical investigation. Spine 15:1153–1158

    Article  PubMed  CAS  Google Scholar 

  3. Aultman CD, Scannell J, McGill SM (2005) The direction of progressive herniation in porcine spine motion segments is influenced by the orientation of the bending axis. Clin Biomech 20:126–129

    Article  Google Scholar 

  4. Bozkus H, Crawford NR, Chamberlain RH, Valenzuela TD, Espinoza A, Yuksel Z, Dickman CA (2005) Comparative anatomy of the porcine and human thoracic spines with reference to thoracoscopic surgical techniques. Surg Endosc 19:1652–1665

    Article  PubMed  CAS  Google Scholar 

  5. Busscher I, van der Veen AJ, van Dieen JH, Kingma I, Verkerke GJ, Veldhuizen AG (2010) In vitro biomechanical characteristics of the spine: a comparison between human and porcine spinal segments. Spine 35:E35–E42

    Article  PubMed  Google Scholar 

  6. Cinotti G, Della Rocca C, Romeo S, Vittur F, Toffanin R, Trasimeni G (2005) Degenerative changes of porcine intervertebral disc induced by vertebral endplate injuries. Spine 30:174–180

    Article  PubMed  Google Scholar 

  7. Dath R, Ebinesan AD, Porter KM, Miles AW (2007) Anatomical measurements of porcine lumbar vertebrae. Clin Biomech 22:607–613

    Article  CAS  Google Scholar 

  8. Flamme CH, Hurschler C, Heymann C, von der Heide N (2005) Comparative biomechanical testing of anterior and posterior stabilization procedures. Spine 30:E352–E362

    Article  PubMed  Google Scholar 

  9. Fogel GR, Li Z, Liu W, Liao Z, Wu J, Zhou W (2010) In vitro evaluation of stiffness and load sharing in a two-level corpectomy: comparison of static and dynamic cervical plates. Spine J 10:417–421

    Article  PubMed  Google Scholar 

  10. Goel VK, Goyal S, Clark C, Nishiyama K, Nye T (1985) Kinematics of the whole lumbar spine. Effect of discectomy. Spine 10:543–554

    Article  PubMed  CAS  Google Scholar 

  11. Goertzen DJ, Lane C, Oxland TR (2004) Neutral zone and range of motion in the spine are greater with stepwise loading than with a continuous loading protocol. An in vitro porcine investigation. J Biomech 37:257–261

    Article  PubMed  Google Scholar 

  12. Gurwitz GS, Dawson JM, McNamara MJ, Federspiel CF, Spengler DM (1993) Biomechanical analysis of three surgical approaches for lumbar burst fractures using short-segment instrumentation. Spine 18:977–982

    Article  PubMed  CAS  Google Scholar 

  13. Heineck J, Haupt C, Werner K, Rammelt S, Zwipp H, Wilke HJ (2010) Fracture models in the lumbar sheep spine: a biomechanical investigation. J Orthop Res 28:773–777

    PubMed  Google Scholar 

  14. Indahl A, Kaigle AM, Reikeras O, Holm SH (1997) Interaction between the porcine lumbar intervertebral disc, zygapophysial joints, and paraspinal muscles. Spine 22:2834–2840

    Article  PubMed  CAS  Google Scholar 

  15. Kaigle AM, Holm SH, Hansson TH (1997) 1997 Volvo Award winner in biomechanical studies. Kinematic behavior of the porcine lumbar spine: a chronic lesion model. Spine 22:2796–2806

    Article  CAS  Google Scholar 

  16. Kandziora F, Pflugmacher R, Scholz M, Schnake K, Lucke M, Schroder R, Mittlmeier T (2001) Comparison between sheep and human cervical spines: an anatomic, radiographic, bone mineral density, and biomechanical study. Spine 26:1028–1037

    Article  PubMed  CAS  Google Scholar 

  17. Kawchuk GN, Kaigle Holm AM, Ekstrom L, Hansson T, Holm SH (2009) Bulging of the inner and outer annulus during in vivo axial loading of normal and degenerated discs. J Spinal Disord Tech 22:214–218

    Article  PubMed  Google Scholar 

  18. Kettler A, Liakos L, Haegele B, Wilke HJ (2007) Are the spines of calf, pig and sheep suitable models for pre-clinical implant tests? Eur Spine J 16:2186–2192

    Article  PubMed  CAS  Google Scholar 

  19. Kettler A, Wilke HJ, Haid C, Claes L (2000) Effects of specimen length on the monosegmental motion behavior of the lumbar spine. Spine 25:543–550

    Article  PubMed  CAS  Google Scholar 

  20. Kumar N, Kukreti S, Ishaque M, Sengupta DK, Mulholland RC (2002) Functional anatomy of the deer spine: an appropriate biomechanical model for the human spine? Anat Rec 266:108–117

    Article  PubMed  Google Scholar 

  21. Lundin O, Ekstrom L, Hellstrom M, Holm S, Sward L (1998) Injuries in the adolescent porcine spine exposed to mechanical compression. Spine 23:2574–2579

    Article  PubMed  CAS  Google Scholar 

  22. Lundin O, Ekstrom L, Hellstrom M, Holm S, Sward L (2000) Exposure of the porcine spine to mechanical compression: differences in injury pattern between adolescents and adults. Eur Spine J 9:466–471

    Article  PubMed  CAS  Google Scholar 

  23. McLain RF, Yerby SA, Moseley TA (2002) Comparative morphometry of L4 vertebrae: comparison of large animal models for the human lumbar spine. Spine 27:E200–E206

    Article  PubMed  Google Scholar 

  24. Nasca RJ, Lemons JE, Walker J, Batson S (1990) Multiaxis cyclic biomechanical testing of Harrington, Luque, and Drummond implants. Spine 15:15–20

    Article  PubMed  CAS  Google Scholar 

  25. Newton PO, Farnsworth CL, Upasani VV, Chambers RC, Varley E, Tsutsui S (2010) Effects of intraoperative tensioning of an anterolateral spinal tether on spinal growth modulation in a porcine model. Spine 36(2):106–117

    Google Scholar 

  26. Nickel R, Schummer A, Seiferle E (1984) Lehrbuch der Anatomie der Haustiere 1

  27. Omlor GW, Nerlich AG, Wilke HJ, Pfeiffer M, Lorenz H, Schaaf-Keim M, Bertram H, Richter W, Carstens C, Guehring T (2009) A new porcine in vivo animal model of disc degeneration: response of anulus fibrosus cells, chondrocyte-like nucleus pulposus cells, and notochordal nucleus pulposus cells to partial nucleotomy. Spine 34:2730–2739

    Article  PubMed  Google Scholar 

  28. Oxland TR, Lin RM, Panjabi MM (1992) Three-dimensional mechanical properties of the thoracolumbar junction. J Orthop Res 10:573–580

    Article  PubMed  CAS  Google Scholar 

  29. Panjabi MM, Oda T, Crisco JJ 3rd, Dvorak J, Grob D (1993) Posture affects motion coupling patterns of the upper cervical spine. J Orthop Res 11:525–536

    Article  PubMed  CAS  Google Scholar 

  30. Panjabi MM, Oxland TR, Yamamoto I, Crisco JJ (1994) Mechanical behavior of the human lumbar and lumbosacral spine as shown by three-dimensional load-displacement curves. J Bone Joint Surg Am 76:413–424

    PubMed  CAS  Google Scholar 

  31. Schmidt R, Richter M, Claes L, Puhl W, Wilke HJ (2005) Limitations of the cervical porcine spine in evaluating spinal implants in comparison with human cervical spinal segments: a biomechanical in vitro comparison of porcine and human cervical spine specimens with different instrumentation techniques. Spine 30:1275–1282

    Article  PubMed  Google Scholar 

  32. Suzuki K, Mochida J, Chiba M, Kikugawa H (1999) Posterior stabilization of degenerative lumbar spondylolisthesis with a Leeds–Keio artificial ligament. A biomechanical analysis in a porcine vertebral model. Spine 24:26–31

    Article  PubMed  CAS  Google Scholar 

  33. Tai CL, Hsieh PH, Chen WP, Chen LH, Chen WJ, Lai PL (2008) Biomechanical comparison of lumbar spine instability between laminectomy and bilateral laminotomy for spinal stenosis syndrome—an experimental study in porcine model. BMC Musculoskelet Disord 9:84

    Article  PubMed  Google Scholar 

  34. Thoreson O, Baranto A, Ekstrom L, Holm S, Hellstrom M, Sward L (2010) The immediate effect of repeated loading on the compressive strength of young porcine lumbar spine. Knee Surg Sports Traumatol Arthrosc 18:694–701

    Article  PubMed  Google Scholar 

  35. Tsai KH, Lin RM, Chang GL (1998) Rate-related fatigue injury of vertebral disc under axial cyclic loading in a porcine body-disc-body unit. Clin Biomech 13:S32–S39

    Article  Google Scholar 

  36. Wen N, Lavaste F, Santin JJ, Lassau JP (1993) Three-dimensional biomechanical properties of the human cervical spine in vitro. I. Analysis of normal motion. Eur Spine J 2:2–11

    Article  PubMed  CAS  Google Scholar 

  37. White AA, Panjabi M (1990) Clinical biomechanics of the spine, 2nd edn. JB Lippincott, Philadelphia

  38. Wilke HJ (2008) Animal models for spinal research. Eur Spine J 17:1

    Article  PubMed  Google Scholar 

  39. Wilke HJ, Rohlmann A, Neller S, Schultheiss M, Bergmann G, Graichen F, Claes LE (2001) Is it possible to simulate physiologic loading conditions by applying pure moments? A comparison of in vivo and in vitro load components in an internal fixator. Spine 26:636–642

    Article  PubMed  CAS  Google Scholar 

  40. Wilke HJ, Claes L, Schmitt H, Wolf S (1994) A universal spine tester for in vitro experiments with muscle force simulation. Eur Spine J 3:91–97

    Article  PubMed  CAS  Google Scholar 

  41. Wilke HJ, Kettler A, Claes LE (1997) Are sheep spines a valid biomechanical model for human spines? Spine 22:2365–2374

    Article  PubMed  CAS  Google Scholar 

  42. Wilke HJ, Kettler A, Wenger KH, Claes LE (1997) Anatomy of the sheep spine and its comparison to the human spine. Anat Rec 247:542–555

    Article  PubMed  CAS  Google Scholar 

  43. Wilke HJ, Krischak S, Claes L (1996) Biomechanical comparison of calf and human spines. J Orthop Res 14:500–503

    Article  PubMed  CAS  Google Scholar 

  44. Wilke HJ, Wenger K, Claes L (1998) Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants. Eur Spine J 7:148–154

    Article  PubMed  CAS  Google Scholar 

  45. Wilke HJ, Wolf S, Claes LE, Arand M, Wiesend A (1995) Stability increase of the lumbar spine with different muscle groups. A biomechanical in vitro study. Spine 20:192–198

    Article  PubMed  CAS  Google Scholar 

  46. Yamamoto I, Panjabi MM, Crisco T, Oxland T (1989) Three-dimensional movements of the whole lumbar spine and lumbosacral joint. Spine 14:1256–1260

    Article  PubMed  CAS  Google Scholar 

  47. Yingling VR, Callaghan JP, McGill SM (1999) The porcine cervical spine as a model of the human lumbar spine: an anatomical, geometric, and functional comparison. J Spinal Disord 12:415–423

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the butchery “Reimche” (Bermaringen, Germany) for the donation of the porcine spines. The study was supported by the AO Research Grant 03-W16.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Joachim Wilke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilke, HJ., Geppert, J. & Kienle, A. Biomechanical in vitro evaluation of the complete porcine spine in comparison with data of the human spine. Eur Spine J 20, 1859–1868 (2011). https://doi.org/10.1007/s00586-011-1822-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-011-1822-6

Keywords

Navigation