Skip to main content

Approaches to Study Spine Biomechanics: A Literature Review

  • Conference paper
  • First Online:
Advances in Human Factors in Simulation and Modeling (AHFE 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 780))

Included in the following conference series:

  • 1457 Accesses

Abstract

A large population will likely experience lower back pain during their lifetime. Severe cases of lower back pain can sometimes be caused by back conditions or diseases, eventually being alleviated through surgical procedure. Skilled surgeons can make educated decisions on the best procedure for their patients, but the development of a spine model that can estimate biomechanical properties of the spine could aid in surgical decision-making. This paper discusses the current state of the art of four approaches used to study spine biomechanics: in vivo experimentation, in vitro cadaveric testing, finite element analysis, and musculoskeletal modeling. It is concluded that using a combination of these methods can lead to more accurate spine models that could possibly lead to clinical use.

The original version of this chapter was revised: Acknowledgment section has been newly included. The erratum to this chapter is available at https://doi.org/10.1007/978-3-319-94223-0_50

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 30 August 2018

    An erratum has been published.

References

  1. Woolf, A.D., Pfleger, B.: Burden of major musculoskeletal conditions. Bull. World Health Organ. 81(9), 646–656 (2003)

    Google Scholar 

  2. Smit, T.H.: The use of a quadruped as an in vivo model for the study of the spine – biomechanical considerations. Eur. Spine J. 11(2), 137–144 (2002)

    Article  Google Scholar 

  3. Rollin, B.E.: Toxicology and new social ethics for animals. Toxicol. Pathol. 31(1_suppl.), 128–131 (2003)

    Article  Google Scholar 

  4. Costs of Animal and Non-Animal Testing : Humane Society International. https://www.hsi.org/issues/chemical_product_testing/facts/time_and_cost.html?, https://www.google.com/. Accessed 27 Feb 2018

  5. Liu, Z., et al.: Sagittal plane rotation center of lower lumbar spine during a dynamic weight-lifting activity. J. Biomech. 49(3), 371–375 (2016)

    Article  Google Scholar 

  6. Wang, S., Xia, Q., Passias, P., Wood, K., Li, G.: Measurement of geometric deformation of lumbar intervertebral discs under in-vivo weightbearing condition. J. Biomech. 42(6), 705–711 (2009)

    Article  Google Scholar 

  7. Wilke, H.-J., Neef, P., Hinz, B., Seidel, H., Claes, L.: Intradiscal pressure together with anthropometric data – a data set for the validation of models. Clin. Biomech. 16(1), S111–S126 (2001)

    Article  Google Scholar 

  8. Dreischarf, M., et al.: In vivo implant forces acting on a vertebral body replacement during upper body flexion. J. Biomech. 48(4), 560–565 (2015)

    Article  Google Scholar 

  9. Rohlmann, A., Zander, T., Graichen, F., Bergmann, G.: Lifting up and laying down a weight causes high spinal loads. J. Biomech. 46(3), 511–514 (2013)

    Article  Google Scholar 

  10. Rozumalski, A., Schwartz, M.H., Wervey, R., Swanson, A., Dykes, D.C., Novacheck, T.: The in vivo three-dimensional motion of the human lumbar spine during gait. Gait Posture 29(1), 165 (2009)

    Article  Google Scholar 

  11. Wilke, H.J., Mathes, B., Midderhoff, S., Graf, N.: Development of a scoliotic spine model for biomechanical in vitro studies. Clin. Biomech. 30(2), 182–187 (2015)

    Article  Google Scholar 

  12. Lubelski, D., Healy, A.T., Mageswaran, P., Benzel, E.C., Mroz, T.E.: Biomechanics of the lower thoracic spine after decompression and fusion: a cadaveric analysis. Spine J. 14(9), 2216–2223 (2014)

    Article  Google Scholar 

  13. Doulgeris, J.J., et al.: Axial rotation mechanics in a cadaveric lumbar spine model: a biomechanical analysis. Spine J. 14(7), 1272–1279 (2014)

    Article  Google Scholar 

  14. Guo, S., et al.: A biomechanical stability study of extraforaminal lumbar interbody fusion on the cadaveric lumbar spine specimens. PLoS One 11(12), e0168498 (2016)

    Article  Google Scholar 

  15. Narici, M.: Human skeletal muscle architecture studied in vivo by non-invasive imaging techniques: functional significance and applications. J. Electromyogr. Kinesiol. 9(2), 97–103 (1999)

    Article  Google Scholar 

  16. Wang, S., et al.: A combined numerical and experimental technique for estimation of the forces and moments in the lumbar intervertebral disc. Comput. Methods Biomech. Biomed. Eng. 16(12), 1278–1286 (2013)

    Article  Google Scholar 

  17. Zhu, R., et al.: The effects of muscle weakness on degenerative spondylolisthesis: a finite element study. Clin. Biomech. 41, 34–38 (2017)

    Article  Google Scholar 

  18. Fan, W., Guo, L.X.: Influence of different frequencies of axial cyclic loading on time-domain vibration response of the lumbar spine: a finite element study. Comput. Biol. Med. 86, 75–81 (2017)

    Article  Google Scholar 

  19. Kang, K.T., Koh, Y.G., Son, J., Yeom, J.S., Park, J.H., Kim, H.J.: Biomechanical evaluation of pedicle screw fixation system in spinal adjacent levels using polyetheretherketone, carbon-fiber-reinforced polyetheretherketone, and traditional titanium as rod materials. Compos. Part B Eng. 130, 248–256 (2017)

    Article  Google Scholar 

  20. Xu, M., Yang, J., Lieberman, I.H., Haddas, R.: Lumbar spine finite element model for healthy subjects: development and validation. Comput. Methods Biomech. Biomed. Eng. 20(1), 1–15 (2017)

    Article  Google Scholar 

  21. Zander, T., Dreischarf, M., Timm, A.-K., Baumann, W.W., Schmidt, H.: Impact of material and morphological parameters on the mechanical response of the lumbar spine – a finite element sensitivity study. J. Biomech. 53, 185–190 (2017)

    Article  Google Scholar 

  22. Xu, M., Yang, J., Lieberman, I., Haddas, R.: Finite element method-based study for effect of adult degenerative scoliosis on the spinal vibration characteristics. Comput. Biol. Med. 84, 53–58 (2017)

    Article  Google Scholar 

  23. Wang, L., Zhang, B., Chen, S., Lu, X., Li, Z.-Y., Guo, Q.: A validated finite element analysis of facet joint stress in degenerative lumbar scoliosis. World Neurosurg. 95, 126–133 (2016)

    Article  Google Scholar 

  24. Niemeyer, F., Wilke, H.J., Schmidt, H.: Geometry strongly influences the response of numerical models of the lumbar spine-a probabilistic finite element analysis. J. Biomech. 45(8), 1414–1423 (2012)

    Article  Google Scholar 

  25. Schmidt, H., Heuer, F., Drumm, J., Klezl, Z., Claes, L., Wilke, H.-J.: Application of a calibration method provides more realistic results for a finite element model of a lumbar spinal segment. Clin. Biomech. 22(4), 377–384 (2007)

    Article  Google Scholar 

  26. Schmidt, H., et al.: Application of a new calibration method for a three-dimensional finite element model of a human lumbar annulus fibrosus. Clin. Biomech. 21(4), 337–344 (2006)

    Article  Google Scholar 

  27. Shirazi-Adl, A., Ahmed, A.M., Shrivastava, S.C.: A finite element study of a lumbar motion segment subjected to pure sagittal plane moments. J. Biomech. 19(4), 331–350 (1986)

    Article  Google Scholar 

  28. Zander, T., Rohlmann, A., Bergmann, G.: Influence of different artificial disc kinematics on spine biomechanics. Clin. Biomech. 24(2), 135–142 (2009)

    Article  Google Scholar 

  29. Xiao, Z., Wang, L., Gong, H., Zhu, D.: Biomechanical evaluation of three surgical scenarios of posterior lumbar interbody fusion by finite element analysis. Biomed. Eng. Online 11(1), 31 (2012)

    Article  Google Scholar 

  30. Delp, S.L., et al.: OpenSim: open source to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 54(11), 1940–1950 (2007)

    Article  Google Scholar 

  31. Bassani, T., Stucovitz, E., Qian, Z., Briguglio, M., Galbusera, F.: Validation of the AnyBody full body musculoskeletal model in computing lumbar spine loads at L4L5 level. J. Biomech. 58, 89–96 (2017)

    Article  Google Scholar 

  32. Putzer, M., Ehrlich, I., Rasmussen, J., Gebbeken, N., Dendorfer, S.: Sensitivity of lumbar spine loading to anatomical parameters. J. Biomech. 49(6), 953–958 (2016)

    Article  Google Scholar 

  33. Christophy, M., Senan, N.A.F., Lotz, J.C., O’Reilly, O.M.: A musculoskeletal model for the lumbar spine. Biomech. Model. Mechanobiol. 11(1–2), 19–34 (2012)

    Article  Google Scholar 

  34. Bruno, A.G., Bouxsein, M.L., Anderson, D.E.: Development and validation of a musculoskeletal model of the fully articulated thoracolumbar spine and rib cage. J. Biomech. Eng. 137(8), 81003 (2015)

    Article  Google Scholar 

  35. Kuai, S., et al.: Influences of lumbar disc herniation on the kinematics in multi-segmental spine, pelvis, and lower extremities during five activities of daily living. BMC Musculoskelet. Disord. 18(1), 216 (2017)

    Article  Google Scholar 

  36. de Zee, M., Hansen, L., Wong, C., Rasmussen, J., Simonsen, E.B.: A generic detailed rigid-body lumbar spine model. J. Biomech. 40(6), 1219–1227 (2007)

    Article  Google Scholar 

  37. Kim, Y., Ta, D., Jung, M., Koo, S.: A musculoskeletal lumbar and thoracic model for calculation of joint kinetics in the spine. J. Mech. Sci. Technol. 30(6), 2891–2897 (2016)

    Article  Google Scholar 

  38. Raabe, M.E., Chaudhari, A.M.W.: An investigation of jogging biomechanics using the full-body lumbar spine model: model development and validation. J. Biomech. 49(7), 1238–1243 (2016)

    Article  Google Scholar 

  39. Zhu, R., Zander, T., Dreischarf, M., Duda, G.N., Rohlmann, A., Schmidt, H.: Considerations when loading spinal finite element models with predicted muscle forces from inverse static analyses. J. Biomech. 46(7), 1376–1378 (2013)

    Article  Google Scholar 

Download references

Acknowledgement

This research is supported by projects from NSF (Award #1703093) and the Texas Tech University Presidential Graduate Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cruz, J., Yang, J., Xiang, Y. (2019). Approaches to Study Spine Biomechanics: A Literature Review. In: Cassenti, D. (eds) Advances in Human Factors in Simulation and Modeling. AHFE 2018. Advances in Intelligent Systems and Computing, vol 780. Springer, Cham. https://doi.org/10.1007/978-3-319-94223-0_43

Download citation

Publish with us

Policies and ethics