Skip to main content

Advertisement

Log in

Differential response of human bone marrow stromal cells to either TGF-β1 or rhGDF-5

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Cell therapy along with growth factor injection is currently widely investigated to restore the intervertebral disc. However, there is increasing evidence that transplanted unconditioned bone marrow-derived stromal cells (BMSCs) cannot thrive in the intervertebral disc “niche”. Moreover, uncertainty exists with respect to the cell phenotype that would be suitable to inject. The intervertebral disc cell phenotype only recently has been started to be characterised using transcriptomics profiling. Recent findings suggest that cytokeratin 19 (KRT-19) could be used as a potential candidate marker for the intervertebral disc, or more specifically the nucleus pulposus cell (NPC) phenotype. We present in vitro cell culture data using alginate bead culture of primary human BMSCs exposed to the standard chondrogenic stimulus, transforming growth factor beta-1 (TGF-β), the growth and differentiation factor 5 and/or bovine NPCs to induce a potential “discogenic” pathway. Chondrogenic induction via TGF-β pathway provoked down-regulation of KRT-19 gene expression in four out of five donors after 18 days of culture, whereas KRT-19 expression remained unchanged in the “discogenic” groups. In addition, the ratio of aggrecan/collagen II gene expression showed a remarkable difference (of at least 3 magnitudes) between the chondrogenic stimulus (low ratio) and the discogenic stimulus (high ratio). Therefore, KRT-19 and aggrecan/collagen II ratio may be potential markers to distinguish chondrogenic from “discogenic” differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Acosta FL, Lotz J, Ames CP (2005) The potential role of mesenchymal stem cell therapy for intervertebral disc degeneration: a critical overview. Neurosurg Focus 19(3):E4

    Article  PubMed  Google Scholar 

  2. Alini M, Eisenstein SM, Ito K, Little C, Kettler AA, Masuda K, Melrose J, Ralphs J, Stokes I, Wilke HJ (2008) Are animal models useful for studying human disc disorders/degeneration? Eur Spine J 17(1):2–19. doi:10.1007/s00586-007-0414-y

    Article  PubMed  Google Scholar 

  3. Anderson DG, Albert TJ, Fraser JK, Risbud M, Wuisman P, Meisel HJ, Tannoury C, Shapiro I, Vaccaro AR (2005) Cellular therapy for disc degeneration. Spine 30(17 Suppl):S14–S19

    Article  PubMed  Google Scholar 

  4. Bai X, Xiao Z, Pan Y, Hu J, Pohl J, Wen J, Li L (2004) Cartilage-derived morphogenetic protein-1 promotes the differentiation of mesenchymal stem cells into chondrocytes. Biochem Biophys Res Commun 325(2):453–460. doi:10.1016/j.bbrc.2004.10.055

    Article  PubMed  CAS  Google Scholar 

  5. Buxton P, Edwards C, Archer CW, Francis-West P (2001) Growth/differentiation factor-5 (GDF-5) and skeletal development. J Bone Joint Surg 83-A Suppl 1(Pt 1):S23–S30

    Google Scholar 

  6. Caplan AI (2005) Review: mesenchymal stem cells: cell-based reconstructive therapy in orthopedics. Tissue Eng 11(7–8):1198–1211. doi:10.1089/ten.2005.11.1198

    Article  PubMed  CAS  Google Scholar 

  7. Chamberlain G, Fox J, Ashton B, Middleton J (2007) Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 25(11):2739–2749. doi:10.1634/stemcells.2007-0197

    Article  PubMed  CAS  Google Scholar 

  8. Chan SCW, Gantenbein-Ritter B, Leung VY, Chan D, Cheung KM, Ito K (2010) Cryopreserved intervertebral disc with injected bone marrow-derived stromal cells: a feasibility study using organ culture. Spine J 10(6):486–496. doi:10.1016/j.spinee.2009.12.019

    Article  PubMed  Google Scholar 

  9. Chen S, Emery SE, Pei M (2009) Coculture of synovium-derived stem cells and nucleus pulposus cells in serum-free defined medium with supplementation of transforming growth factor-beta1: a potential application of tissue-specific stem cells in disc regeneration. Spine 34(12):1272–1280. doi:10.1097/BRS.0b013e3181a2b347

    Article  PubMed  Google Scholar 

  10. Chujo T, An HS, Akeda K, Miyamoto K, Muehleman C, Attawia M, Andersson G, Masuda K (2006) Effects of growth differentiation factor-5 on the intervertebral disc—in vitro bovine study and in vivo rabbit disc degeneration model study. Spine 31(25):2909–2917. doi:10.1097/01.brs.0000248428.22823.86

    Article  PubMed  Google Scholar 

  11. Clouet J, Grimandi G, Pot-Vaucel M, Masson M, Fellah HB, Guigand L, Cherel Y, Bord E, Rannou F, Weiss P, Guicheux J, Vinatier C (2009) Identification of phenotypic discriminating markers for intervertebral disc cells and articular chondrocytes. Rheumatology 48(11):1447–1450. doi:10.1093/rheumatology/kep262

    Article  PubMed  CAS  Google Scholar 

  12. Crevensten G, Walsh AJ, Ananthakrishnan D, Page P, Wahba GM, Lotz JC, Berven S (2004) Intervertebral disc cell therapy for regeneration: mesenchymal stem cell implantation in rat intervertebral discs. Ann Biomed Eng 32(3):430–434

    Article  PubMed  Google Scholar 

  13. Cui M, Wan Y, Anderson DG, Shen FH, Leo BM, Laurencin CT, Balian G, Li X (2008) Mouse growth and differentiation factor-5 protein and DNA therapy potentiates intervertebral disc cell aggregation and chondrogenic gene expression. Spine J 8(2):287–295. doi:10.1016/j.spinee.2007.05.012

    Article  PubMed  Google Scholar 

  14. da Silva Meirelles L, Caplan AI, Nardi NB (2008) In search of the in vivo identity of mesenchymal stem cells. Stem Cells 26(9):2287–2299. doi:10.1634/stemcells.2007-1122

    Article  PubMed  Google Scholar 

  15. de Crombrugghe B, Lefebvre V, Behringer RR, Bi W, Murakami S, Huang W (2000) Transcriptional mechanisms of chondrocyte differentiation. Matrix Biol 19(5):389–394

    Article  PubMed  Google Scholar 

  16. Ducy P, Karsenty G (2000) The family of bone morphogenetic proteins. Kidney Int 57(6):2207–2214. doi:10.1046/j.1523-1755.2000.00081.x

    Article  PubMed  CAS  Google Scholar 

  17. Erlacher L, Ng CK, Ullrich R, Krieger S, Luyten FP (1998) Presence of cartilage-derived morphogenetic proteins in articular cartilage and enhancement of matrix replacement in vitro. Arthritis Rheum 41(2):263–273. doi:10.1002/1529-0131(199802)41:2<263:AID-ART10>3.0.CO;2-5

    Article  PubMed  CAS  Google Scholar 

  18. Farndale RW, Buttle DJ, Barrett AJ (1986) Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue 1. Biochim Biophys Acta 883(2):173–177

    PubMed  CAS  Google Scholar 

  19. Farng E, Urdaneta AR, Barba D, Esmende S, McAllister DR (2008) The effects of GDF-5 and uniaxial strain on mesenchymal stem cells in 3-D culture. Clin Orthop Relat Res 466(8):1930–1937. doi:10.1007/s11999-008-0300-x

    Article  PubMed  Google Scholar 

  20. Feng G, Wan Y, Balian G, Laurencin CT, Li X (2008) Adenovirus-mediated expression of growth and differentiation factor-5 promotes chondrogenesis of adipose stem cells. Growth Factors 26(3):132–142

    Google Scholar 

  21. Francis-West PH, Abdelfattah A, Chen P, Allen C, Parish J, Ladher R, Allen S, MacPherson S, Luyten FP, Archer CW (1999) Mechanisms of GDF-5 action during skeletal development. Development 126(6):1305–1315

    PubMed  CAS  Google Scholar 

  22. Fujita N, Miyamoto T, Imai J, Hosogane N, Suzuki T, Yagi M, Morita K, Ninomiya K, Miyamoto K, Takaishi H, Matsumoto M, Morioka H, Yabe H, Chiba K, Watanabe S, Toyama Y, Suda T (2005) CD24 is expressed specifically in the nucleus pulposus of intervertebral discs. Biochem Biophys Res Commun 338(4):1890–1896

    Article  PubMed  CAS  Google Scholar 

  23. Hiyama A, Mochida J, Iwashina T, Omi H, Watanabe T, Serigano K, Tamura F, Sakai D (2008) Transplantation of mesenchymal stem cells in a canine disc degeneration model. J Orthop Res 26(5):589–600. doi:10.1002/jor.20584

    Article  PubMed  CAS  Google Scholar 

  24. Hiyama A, Mochida J, Sakai D (2008) Stem cell applications in intervertebral disc repair. Cell Mol Biol 54(1):24–32

    PubMed  CAS  Google Scholar 

  25. Holzwarth C, Vaegler M, Gieseke F, Pfister SM, Handgretinger R, Kerst G, Muller I (2010) Low physiologic oxygen tensions reduce proliferation and differentiation of human multipotent mesenchymal stromal cells. BMC Cell Biol 11(1):11. doi:10.1186/1471-2121-11-11

    Article  PubMed  Google Scholar 

  26. Kim DH, Kim SH, Heo SJ, Shin JW, Lee SW, Park SA, Shin JW (2009) Enhanced differentiation of mesenchymal stem cells into NP-like cells via 3D co-culturing with mechanical stimulation. J Biosci Bioeng 108(1):63–67

    Google Scholar 

  27. Lee CR, Sakai D, Nakai T, Toyama K, Mochida J, Alini M, Grad S (2007) A phenotypic comparison of intervertebral disc and articular cartilage cells in the rat. Eur Spine J 16(12):2174–2185. doi:10.1007/s00586-007-0475-y

    Article  PubMed  Google Scholar 

  28. Leung VY, Chan D, Cheung KM (2006) Regeneration of intervertebral disc by mesenchymal stem cells: potentials, limitations, and future direction. Eur Spine J 15(Suppl 3):S406–S413. doi:10.1007/s00586-006-0183-z

    Article  PubMed  Google Scholar 

  29. Li Z, Kupcsik L, Yao SJ, Alini M, Stoddart MJ (2009) Chondrogenesis of human bone marrow mesenchymal stem cells in fibrin-polyurethane composites. Tissue Eng Part A 15(7):1729–1737. doi:10.1089/ten.tea.2008.0247

    Article  PubMed  CAS  Google Scholar 

  30. Liang H, Ma SY, Feng G, Shen FH, Joshua Li X (2010) Therapeutic effects of adenovirus-mediated growth and differentiation factor-5 in a mice disc degeneration model induced by annulus needle puncture. Spine J 10(1):32–41. doi:10.1016/j.spinee.2009.10.006

    Article  PubMed  Google Scholar 

  31. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408. doi:10.1006/meth.2001.1262

    Article  PubMed  CAS  Google Scholar 

  32. Luyten FP (1997) Cartilage-derived morphogenetic protein-1. Int J Biochem Cell Biol 29(11):1241–1244

    Article  PubMed  CAS  Google Scholar 

  33. Masuda K, An HS (2006) Prevention of disc degeneration with growth factors. Eur Spine J 15(Suppl 3):S422–S432. doi:10.1007/s00586-006-0149-1

    Article  PubMed  Google Scholar 

  34. Masuda K, Lotz JC (2010) New challenges for intervertebral disc treatment using regenerative medicine. Tissue Eng Part B Rev 16(1):147–158

    Article  PubMed  Google Scholar 

  35. Minogue BM, Richardson SM, Zeef LA, Freemont AJ, Hoyland JA (2010) Transcriptional profiling of bovine intervertebral disc cells: implications for identification of normal and degenerate human intervertebral disc cell phenotypes. Arthritis Res Ther 12(1):R22. doi:10.1186/ar2929

    Article  PubMed  Google Scholar 

  36. Mitchell JB, McIntosh K, Zvonic S, Garrett S, Floyd ZE, Kloster A, Di Halvorsen Y, Storms RW, Goh B, Kilroy G, Wu X, Gimble JM (2006) Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers. Stem Cells 24(2):376–385. doi:10.1634/stemcells.2005-0234

    Article  PubMed  Google Scholar 

  37. Miyamoto Y, Mabuchi A, Shi D, Kubo T, Takatori Y, Saito S, Fujioka M, Sudo A, Uchida A, Yamamoto S, Ozaki K, Takigawa M, Tanaka T, Nakamura Y, Jiang Q, Ikegawa S (2007) A functional polymorphism in the 5′ UTR of GDF5 is associated with susceptibility to osteoarthritis. Nat Genet 39(4):529–533. doi:10.1038/2005

    Article  PubMed  CAS  Google Scholar 

  38. Miyazaki T, Kobayashi S, Takeno K, Meir A, Urban J, Baba H (2009) A phenotypic comparison of proteoglycan production of intervertebral disc cells isolated from rats, rabbits, and bovine tails; which animal model is most suitable to study tissue engineering and biological repair of human disc disorders? Tissue Eng Part A 15(12):3835–3846. doi:10.1089/ten.tea.2009.0250

    Article  PubMed  CAS  Google Scholar 

  39. Mwale F, Roughley P, Antoniou J (2004) Distinction between the extracellular matrix of the nucleus pulposus and hyaline cartilage: a requisite for tissue engineering of intervertebral disc. Eur Cell Mater 8:58–63 discussion 63–64

    PubMed  CAS  Google Scholar 

  40. Nakase T, Ariga K, Miyamoto S, Okuda S, Tomita T, Iwasaki M, Yonenobu K, Yoshikawa H (2001) Distribution of genes for bone morphogenetic protein-4, -6, growth differentiation factor-5, and bone morphogenetic protein receptors in the process of experimental spondylosis in mice. J Neurosurg 94(1 Suppl):68–75

    PubMed  CAS  Google Scholar 

  41. Paul R, Haydon RC, Cheng H, Ishikawa A, Nenadovich N, Jiang W, Zhou L, Breyer B, Feng T, Gupta P, He TC, Phillips FM (2003) Potential use of Sox9 gene therapy for intervertebral degenerative disc disease. Spine 28(8):755–763

    PubMed  Google Scholar 

  42. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143. doi:10.1126/science.284.5411.143

    Article  PubMed  CAS  Google Scholar 

  43. Richardson SM, Walker RV, Parker S, Rhodes NP, Hunt JA, Freemont AJ, Hoyland JA (2006) Intervertebral disc cell-mediated mesenchymal stem cell differentiation. Stem Cells 24(3):707–716. doi:10.1634/stemcells.2005-0205

    Article  PubMed  CAS  Google Scholar 

  44. Richardson SM, Hoyland JA, Mobasheri R, Csaki C, Shakibaei M, Mobasheri A (2010) Mesenchymal stem cells in regenerative medicine: opportunities and challenges for articular cartilage and intervertebral disc tissue engineering. J Cell Physiol 222(1):23–32. doi:10.1002/jcp.21915

    Article  PubMed  CAS  Google Scholar 

  45. Risbud MV, Albert TJ, Guttapalli A, Vresilovic EJ, Hillibrand AS, Vaccaro AR, Shapiro IM (2004) Differentiation of mesenchymal stem cells towards a nucleus pulposus-like phenotype in vitro: implications for cell-based transplantation therapy. Spine 29(23):2627–2632

    Article  PubMed  Google Scholar 

  46. Rutges J, Creemers LB, Dhert W, Milz S, Sakai D, Mochida J, Alini M, Grad S (2010) Variations in gene and protein expression in human nucleus pulposus in comparison with annulus fibrosus and cartilage cells: potential associations with aging and degeneration. Osteoarthritis Cartilage 18(3):416–423. doi:10.1016/j.joca.2009.09.009

    Article  PubMed  CAS  Google Scholar 

  47. Sakai D, Nakai T, Mochida J, Alini M, Grad S (2009) Differential phenotype of intervertebral disc cells: microarray and immunohistochemical analysis of canine nucleus pulposus and anulus fibrosus. Spine 34(14):1448–1456. doi:10.1097/BRS.0b013e3181a55705

    Article  PubMed  Google Scholar 

  48. Serigano K, Sakai D, Hiyama A, Tamura F, Tanaka M, Mochida J (2010) Effect of cell number on mesenchymal stem cell transplantation in a canine disc degeneration model. J Orthop Res 28(16):1267–1275

    Article  PubMed  Google Scholar 

  49. Sobajima S, Vadala G, Shimer A, Kim JS, Gilbertson LG, Kang JD (2008) Feasibility of a stem cell therapy for intervertebral disc degeneration. Spine J 8(6):888–896. doi:10.1016/j.spinee.2007.09.011

    Article  PubMed  Google Scholar 

  50. Solchaga LA, Penick K, Porter JD, Goldberg VM, Caplan AI, Welter JF (2005) FGF-2 enhances the mitotic and chondrogenic potentials of human adult bone marrow-derived mesenchymal stem cells. J Cell Physiol 203(2):398–409. doi:10.1002/jcp.20238

    Article  PubMed  CAS  Google Scholar 

  51. Steck E, Bertram H, Abel R, Chen B, Winter A, Richter W (2005) Induction of intervertebral disc-like cells from adult mesenchymal stem cells. Stem Cells 23(3):403–411. doi:10.1634/stemcells.2004-0107

    Article  PubMed  CAS  Google Scholar 

  52. Tischer T, Milz S, Maier M, Schieker M, Benjamin M (2002) An immunohistochemical study of the rabbit suprapatella, a sesamoid fibrocartilage in the quadriceps tendon containing aggrecan. J Histochem Cytochem 50(7):955–960

    Article  PubMed  CAS  Google Scholar 

  53. Vadalà G, Sobajima S, Lee JY, Huard J, Denaro V, Kang JD, Gilbertson LG (2008) In vitro interaction between muscle-derived stem cells and nucleus pulposus cells. Spine J 8(5):804–809. doi:10.1016/j.spinee.2007.07.394

    Article  PubMed  Google Scholar 

  54. Vadalà G, Studer RK, Sowa G, Spiezia F, Iucu C, Denaro V, Gilbertson LG, Kang JD (2008) Coculture of bone marrow mesenchymal stem cells and nucleus pulposus cells modulate gene expression profile without cell fusion. Spine 33(8):870–876. doi:10.1097/BRS.0b013e31816b4619

    Article  PubMed  Google Scholar 

  55. Walsh AJ, Bradford DS, Lotz JC (2004) In vivo growth factor treatment of degenerated intervertebral discs. Spine 29(2):156–163. doi:10.1097/01.BRS.0000107231.67854.9F

    Article  PubMed  Google Scholar 

  56. Wang H, Kroeber M, Hanke M, Ries R, Schmid C, Poller W, Richter W (2004) Release of active and depot GDF-5 after adenovirus-mediated overexpression stimulates rabbit and human intervertebral disc cells. J Mol Med 82(2):126–134. doi:10.1007/s00109-003-0507-y

    Article  PubMed  CAS  Google Scholar 

  57. Watanabe T, Sakai D, Yamamoto Y, Iwashina T, Serigano K, Tamura F, Mochida J (2010) Human nucleus pulposus cells significantly enhanced biological properties in a coculture system with direct cell-to-cell contact with autologous mesenchymal stem cells. J Orthop Res 28(5):623–630. doi:10.1002/jor.21036

    PubMed  CAS  Google Scholar 

  58. Wei A, Tao H, Chung SA, Brisby H, Ma DD, Diwan AD (2009) The fate of transplanted xenogeneic bone marrow-derived stem cells in rat intervertebral discs. J Orthop Res 27(3):374–379. doi:10.1002/jor.20567

    Article  PubMed  Google Scholar 

  59. Wuertz K, Godburn K, Neidlinger-Wilke C, Urban J, Iatridis JC (2008) Behavior of mesenchymal stem cells in the chemical microenvironment of the intervertebral disc. Spine 33(17):1843–1849. doi:10.1097/BRS.0b013e31817b8f53

    Article  PubMed  Google Scholar 

  60. Wuertz K, Godburn K, Iatridis JC (2009) MSC response to pH levels found in degenerating intervertebral discs. Biochem Biophys Res Commun 379(4):824–829. doi:10.1016/j.bbrc.2008.12.145

    Article  PubMed  CAS  Google Scholar 

  61. Yang X, Li X (2009) Nucleus pulposus tissue engineering: a brief review. Eur Spine J 18(18):1–9. doi:10.1007/s00586-009-1092-8

    CAS  Google Scholar 

  62. Yang SH, Wu CC, Shih TT, Sun YH, Lin FH (2008) In vitro study on interaction between human nucleus pulposus cells and mesenchymal stem cells through paracrine stimulation. Spine 33(18):1951–1957. doi:10.1097/BRS.0b013e31817e6974

    Article  PubMed  Google Scholar 

  63. Zeiter S, der Werf M, Ito K (2009) The fate of bovine bone marrow stromal cells in hydrogels: a comparison to nucleus pulposus cells and articular chondrocytes. J Tissue Eng Regen Med 3(4):310–320

    Article  PubMed  CAS  Google Scholar 

  64. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7(2):211–228. doi:10.1089/107632701300062859

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. E. Brown (Advanced Technologies and Regenerative Medicine, LLC) for providing rhGDF-5 and Christoph Sprecher for technical support. This study was partially supported by the Swiss National Science Foundation (SNSF) (Grant #3320000-116818).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sibylle Grad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gantenbein-Ritter, B., Benneker, L.M., Alini, M. et al. Differential response of human bone marrow stromal cells to either TGF-β1 or rhGDF-5. Eur Spine J 20, 962–971 (2011). https://doi.org/10.1007/s00586-010-1619-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-010-1619-z

Keywords

Navigation