Skip to main content

Advertisement

Log in

Prevention of disc degeneration with growth factors

  • Review Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Clinically, a large number of patients have persistent low back pain attributable to intervertebral disc (IVD) degeneration. After the concept of biologically regenerating the degenerated IVD using growth factor injection was first proposed in early 1990, the advancement of molecular technology to produce recombinant proteins, including growth factors, on an industrial scale accelerated research in this field. The purpose of this review is to summarize the most recent findings of the in vitro and in vivo effects of growth factors on the IVD and, further, to discuss the limitations of growth factor therapy and its clinical implications. In vitro data showed that stimulation of matrix synthesis by growth factors alters the balance of homeostasis by shifting cellular metabolism to the anabolic state. In vivo data using small animals has shown the possibility of using growth factors as a “structural modifying therapy”. Based on in vitro and in vivo data previously reported, the clinical application of growth factors by direct injection of protein into the nucleus pulposus or anulus fibrosus was shown to be feasible as a new therapeutic intervention for treatment of disc degeneration. Stimulation of the biological repair process will create a new category of therapy to treat disc degeneration, where no active treatment currently exists, between conservative therapies and more aggressive therapies such as fusion or disc replacement. However, it should be noted that there are several important factors to be taken into consideration. In a relatively advanced degenerative condition, the supply of nutrients is disturbed and stimulation of cellular activity by growth factors may result in an increased demand for nutrients, eventually inducing an adverse event. Further investigations of the optimal environment for growth factor stimulation should be pursued. Growth factor therapy, which has experimental evidence supporting it to be a “structural modifying therapy”, may not be a “symptom modifying therapy” that is able to resolve the symptoms associated with pathologic changes. Therefore, further studies on the effect of growth factor therapy on pain are essential to shed light on its therapeutic usefulness for degenerative disc disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Adams ME, Billingham MEJ, Muir H (1983) The glycosaminoglycans in menisci in experimental and natural osteoarthritis. Arthritis Rheum 26:69–76

    Article  PubMed  CAS  Google Scholar 

  2. Ahn SH, Cho YW, Ahn MW, Jang SH, Sohn YK, Kim HS (2002) mRNA expression of cytokines and chemokines in herniated lumbar intervertebral discs. Spine 27:911–917

    Article  PubMed  Google Scholar 

  3. Akeda K, An H, Pichika R, Attawia M, Lenz M, Uchida A, Thonar E, Masuda K (2006) Platelet-rich Plasma (PRP) stimulates the extracellular matrix metabolism of porcine nucleus pulposus and annulus fibrosus cells cultured in alginate beads. Spine 31:959–966

    Article  PubMed  Google Scholar 

  4. An HS, Takegami K, Kamada H, Nguyen CM, Thonar EJ, Singh K, Andersson GB, Masuda K (2005) Intradiscal administration of osteogenic protein-1 increases intervertebral disc height and proteoglycan content in the nucleus pulposus in normal adolescent rabbits. Spine 30:25–31

    PubMed  Google Scholar 

  5. An HS, Thonar EJ, Masuda K (2003) Biological repair of intervertebral disc. Spine 28:S86–S92

    Article  PubMed  Google Scholar 

  6. Anderson DG, Izzo MW, Hall DJ, Vaccaro AR, Hilibrand A, Arnold W, Tuan RS, Albert TJ (2002) Comparative gene expression profiling of normal and degenerative discs: analysis of a rabbit annular laceration model. Spine 27:1291–1296

    Article  PubMed  Google Scholar 

  7. Andersson GB (1999) Epidemiological features of chronic low-back pain. Lancet 354:581–585

    Article  PubMed  CAS  Google Scholar 

  8. Annunen S, Paassilta P, Lohiniva J, Perala M, Pihlajamaa T, Karppinen J, Tervonen O, Kroger H, Lahde S, Vanharanta H, Ryhanen L, Goring HH, Ott J, Prockop DJ, Ala-Kokko L (1999) An allele of COL9A2 associated with intervertebral disc disease. Science 285:409–412

    Article  PubMed  CAS  Google Scholar 

  9. Battie MC, Haynor DR, Fisher LD, Gill K, Gibbons LE, Videman T (1995) Similarities in degenerative findings on magnetic resonance images of the lumbar spines of identical twins. J Bone Joint Surg Am 77:1662–1670

    PubMed  CAS  Google Scholar 

  10. Blumenthal S, McAfee PC, Guyer RD, Hochschuler SH, Geisler FH, Holt RT, Garcia R Jr, Regan JJ, Ohnmeiss DD (2005) A prospective, randomized, multicenter food and drug administration investigational device exemptions study of lumbar total disc replacement with the charite artificial disc versus lumbar fusion: part I: evaluation of clinical outcomes. Spine 30:1565–1575

    Google Scholar 

  11. Burke JG, Watson RG, Conhyea D, McCormack D, Dowling FE, Walsh MG, Fitzpatrick JM (2003) Human nucleus pulposus can respond to a pro-inflammatory stimulus. Spine 28:2685–2693

    Article  PubMed  CAS  Google Scholar 

  12. Chujo T, Akeda K, An H, Thonar E, Attawia M, Masuda K (2005) In vitro and in vivo effects of recombinant human growth and differentiation factor-5 on the intervertebral disc. Spine J 5:S145

    Article  Google Scholar 

  13. Chujo T, An H, Akeda K, Miyamoto K, Muehleman C, Attawia M, Andersson G, Masuda K (in print) Effects of growth differentiation factor-5 (GDF-5) on the intervertebral disc–in vitro bovine study and in vivo rabbit disc degeneration model study. Spine (in press)

  14. Doita M, Kanatani T, Harada T, Mizuno K (1996) Immunohistologic study of the ruptured intervertebral disc of the lumbar spine. Spine 21:235–241

    Article  PubMed  CAS  Google Scholar 

  15. Dugrillon A, Eichler H, Kern S, Kluter H (2002) Autologous concentrated platelet-rich plasma (cPRP) for local application in bone regeneration. Int J Oral Maxillofac Surg 31:615–619

    Article  PubMed  CAS  Google Scholar 

  16. Freeman BJ, Fraser RD, Cain CM, Hall DJ, Chapple DC (2005) A randomized, double-blind, controlled trial: intradiscal electrothermal therapy versus placebo for the treatment of chronic discogenic low back pain. Spine 30:2369–2377

    Google Scholar 

  17. Fujita K, Nakagawa T, Hirabayashi K, Nagai Y (1993) Neutral proteinases in human intervertebral disc. Role in degeneration and probable origin. Spine 18:1766–1773

    Article  PubMed  CAS  Google Scholar 

  18. Furusawa N, Baba H, Miyoshi N, Maezawa Y, Uchida K, Kokubo Y, Fukuda M (2001) Herniation of cervical intervertebral disc: immunohistochemical examination and measurement of nitric oxide production. Spine 26:1110–1116

    Article  PubMed  CAS  Google Scholar 

  19. Ganey T, Libera J, Moos V, Alasevic O, Fritsch KG, Meisel HJ, Hutton WC (2003) Disc chondrocyte transplantation in a canine model: a treatment for degenerated or damaged intervertebral disc. Spine 28:2609–2620

    Article  PubMed  Google Scholar 

  20. Geisler FH, Blumenthal SL, Guyer RD, McAfee PC, Regan JJ, Johnson JP, Mullin B (2004) Neurological complications of lumbar artificial disc replacement and comparison of clinical results with those related to lumbar arthrodesis in the literature: results of a multicenter, prospective, randomized investigational device exemption study of charite intervertebral disc. Invited submission from the joint section meeting on disorders of the Spine and Peripheral nerves, March 2004. J Neurosurg Spine 1:143–154

    Article  PubMed  Google Scholar 

  21. Goupille P, Jayson MI, Valat JP, Freemont AJ (1998) Matrix metalloproteinases: the clue to intervertebral disc degeneration? Spine 23:1612–1626

    Article  PubMed  CAS  Google Scholar 

  22. Grob D, Benini A, Junge A, Mannion AF (2005) Clinical experience with the dynesys semirigid fixation system for the lumbar spine: surgical and patient-oriented outcome in 50 cases after an average of 2 years. Spine 30:324–331

    Article  PubMed  Google Scholar 

  23. Gruber HE, Fisher EC Jr, Desai B, Stasky AA, Hoelscher G, Hanley EN Jr (1997) Human intervertebral disc cells from the annulus: three-dimensional culture in agarose or alginate and responsiveness to TGF-beta1. Exp Cell Res 235:13–21

    Article  PubMed  CAS  Google Scholar 

  24. Gruber HE, Hanley EN Jr (1998) Analysis of aging and degeneration of the human intervertebral disc. Comparison of surgical specimens with normal controls. Spine 23:751–757

    Article  PubMed  CAS  Google Scholar 

  25. Gruber HE, Johnson TL, Leslie K, Ingram JA, Martin D, Hoelscher G, Banks D, Phieffer L, Coldham G, Hanley EN Jr (2002) Autologous intervertebral disc cell implantation: a model using psammomys obesus, the sand rat. Spine 27:1626–1633

    Article  PubMed  Google Scholar 

  26. Gruber HE, Norton HJ, Hanley EN Jr (2000) Anti-apoptotic effects of IGF-1 and PDGF on human intervertebral disc cells in vitro. Spine 25:2153–2157

    Article  PubMed  CAS  Google Scholar 

  27. Igarashi T, Kikuchi S, Shubayev V, Myers RR (2000) 2000 Volvo Award winner in basic science studies: exogenous tumor necrosis factor-alpha mimics nucleus pulposus-induced neuropathology. Molecular, histologic, and behavioral comparisons in rats. Spine 25:2975–2980

    Article  PubMed  CAS  Google Scholar 

  28. Imai Y, An H, Matsumoto T, Nguyen C, Andersson G, Thonar E, Masuda K (2002) Intervertebral disc regeneration with rhOP-1 following C-ABC chemonucleolysis: an in vivo study using the rabbit model the International Society for the study of the Lumbar Spine. In: 29th Annual Meeting Proceeding, Cleveland, OH, p71

  29. Imai Y, An H, Pichika R, Thonar E, Otten L, Andersson G, Masuda K (2003) Recombinant human osteogenic protein-1 upregulates extracellular matrix metabolism by human annulus fibrosus and nucleus pulposus cells. Trans Orthop Res Soc 28:1140

    Google Scholar 

  30. Kang JD, Georgescu HI, McIntyre-Larkin L, Stefanovic-Racic M, Donaldson WF, 3rd, Evans CH (1996) Herniated lumbar intervertebral discs spontaneously produce matrix metalloproteinases, nitric oxide, interleukin-6, and prostaglandin E2. Spine 21:271–277

    Article  PubMed  CAS  Google Scholar 

  31. Kang JD, Georgescu HI, McIntyre-Larkin L, Stefanovic-Racic M, Evans CH (1995) Herniated cervical intervertebral discs spontaneously produce matrix metalloproteinases, nitric oxide, interleukin-6, and prostaglandin E2. Spine 20:2373–2378

    Article  PubMed  CAS  Google Scholar 

  32. Kang JD, Stefanovic-Racic M, McIntyre LA, Georgescu HI, Evans CH (1997) Toward a biochemical understanding of human intervertebral disc degeneration and herniation. Contributions of nitric oxide, interleukins, prostaglandin E2, and matrix metalloproteinases. Spine 22:1065–1073

    Article  PubMed  CAS  Google Scholar 

  33. Kawaguchi Y, Osada R, Kanamori M, Ishihara H, Ohmori K, Matsui H, Kimura T (1999) Association between an aggrecan gene polymorphism and lumbar disc degeneration. Spine 24:2456–2460

    Article  PubMed  CAS  Google Scholar 

  34. Kim DJ, Moon SH, Kim H, Kwon UH, Park MS, Han KJ, Hahn SB, Lee HM (2003) Bone morphogenetic protein-2 Facilitates expression of chondrogenic, not osteogenic, phenotype of human intervertebral disc cells. Spine 28:2679–2684

    Article  PubMed  Google Scholar 

  35. Konttinen YTu, Kemppinen P, Li TF, Waris E, Pihlajamaki H, Sorsa T, Takagi M, Santavirta S, Schultz GS, Humphreys-Beher MG (1999) Transforming and epidermal growth factors in degenerated intervertebral discs. J Bone Joint Surg Br 81:1058–1063

    Article  Google Scholar 

  36. Landesberg R, Roy M, Glickman RS (2000) Quantification of growth factor levels using a simplified method of platelet-rich plasma gel preparation. J Oral Maxillofac Surg 58:297–300

    Article  PubMed  CAS  Google Scholar 

  37. Le Maitre CL, Freemont AJ, Hoyland JA (2004) Localization of degradative enzymes and their inhibitors in the degenerate human intervertebral disc. J Pathol 204:47–54

    Article  PubMed  CAS  Google Scholar 

  38. Le Maitre CL, Freemont AJ, Hoyland JA (2005) The role of interleukin-1 in the pathogenesis of human intervertebral disc degeneration. Arthritis Res Ther 7:R732–R745

    Article  PubMed  CAS  Google Scholar 

  39. Le Maitre CL, Richardson SM, Baird P, Freemont AJ, Hoyland JA (2005) Expression of receptors for putative anabolic growth factors in human intervertebral disc: implications for repair and regeneration of the disc. J Pathol 207:445–452

    Article  PubMed  CAS  Google Scholar 

  40. Li J, Yoon ST, Hutton WC (2004) Effect of bone morphogenetic protein-2 (BMP-2) on matrix production, other BMPs, and BMP receptors in rat intervertebral disc cells. J Spinal Disord Tech 17:423–428

    Article  PubMed  Google Scholar 

  41. Li X, Leo BM, Beck G, Balian G, Anderson GD (2004) Collagen and proteoglycan abnormalities in the GDF-5-deficient mice and molecular changes when treating disk cells with recombinant growth factor. Spine 29:2229–2234

    Article  PubMed  Google Scholar 

  42. Liu J, Roughley PJ, Mort JS (1991) Identification of human intervertebral disc stromelysin and its involvement in matrix degradation. J Orthop Res 9:568–575

    Article  PubMed  CAS  Google Scholar 

  43. Manek NJ, MacGregor AJ (2005) Epidemiology of back disorders: prevalence, risk factors, and prognosis. Curr Opin Rheumatol 17:134–140

    Article  PubMed  Google Scholar 

  44. Masuda K, Aota Y, Muehleman C, Imai Y, Okuma M, Thonar EJ, Andersson GB, An HS (2005) A novel rabbit model of mild, reproducible disc degeneration by an anulus needle puncture: correlation between the degree of disc injury and radiological and histological appearances of disc degeneration. Spine 30:5–14

    PubMed  Google Scholar 

  45. Masuda K, Imai Y, Okuma M, Muehleman C, Nakagawa K, Akeda K, Thonar E, Andersson G, An H (2006) Osteogenic protein-1 (OP-1) injection into a degenerated disc induces the restoration of disc height and structural changes in the rabbit annular puncture model. Spine 31:742–754

    Article  PubMed  Google Scholar 

  46. Masuda K, Oegema TR Jr, An HS (2004) Growth factors and treatment of intervertebral disc degeneration. Spine 29:2757–2769

    Article  PubMed  Google Scholar 

  47. Masuda K, Takegami K, An H, Kumano F, Chiba K, Andersson GB, Schmid T, Thonar E (2003) Recombinant osteogenic protein-1 upregulates extracellular matrix metabolism by rabbit annulus fibrosus and nucleus pulposus cells cultured in alginate beads. J Orthop Res 21:922–930

    Article  PubMed  CAS  Google Scholar 

  48. Matsui Y, Maeda M, Nakagami W, Iwata H (1998) The involvement of matrix metalloproteinases and inflammation in lumbar disc herniation. Spine 23:863–868

    Article  PubMed  CAS  Google Scholar 

  49. Matsumoto T, An H, Thonar E, Andersson G, Masuda K (2002) Effect of osteogenic orotein-1 on the metabolism of proteoglycan of intervertebral disc cells in aging. Trans Orthop Res Soc 27:826

    Google Scholar 

  50. Matsunaga S, Nagano S, Onishi T, Morimoto N, Suzuki S, Komiya S (2003) Age-related changes in expression of transforming growth factor-beta and receptors in cells of intervertebral discs. J Neurosurg 98:63–67

    PubMed  CAS  Google Scholar 

  51. Melrose J, Smith S, Little CB, Kitson J, Hwa SY, Ghosh P (2002) Spatial and temporal localization of transforming growth factor-beta, fibroblast growth factor-2, and osteonectin, and identification of cells expressing alpha-smooth muscle actin in the injured anulus fibrosus: implications for extracellular matrix repair. Spine 27:1756–1764

    Article  PubMed  Google Scholar 

  52. Miyamoto K, Masuda K, Thonar E-M, An H (2005) Differences in the response of human intervertebral disc cells to osteogenic protein-1 at different stages of degeneration. Spine J 5:137S

    Article  Google Scholar 

  53. Mwale F, Demers CN, Petit A, Roughley P, Poole AR, Steffen T, Aebi M, Antoniou J (2003) A synthetic peptide of link protein stimulates the biosynthesis of collagens II, IX and proteoglycan by cells of the intervertebral disc. J Cell Biochem 88:1202–1213

    Article  PubMed  CAS  Google Scholar 

  54. Nagano T, Yonenobu K, Miyamoto S, Tohyama M, Ono K (1995) Distribution of the basic fibroblast growth factor and its receptor gene expression in normal and degenerated rat intervertebral discs. Spine 20:1972–1978

    Article  PubMed  CAS  Google Scholar 

  55. Nakase T, Ariga K, Miyamoto S, Okuda S, Tomita T, Iwasaki M, Yonenobu K, Yoshikawa H (2001) Distribution of genes for bone morphogenetic protein-4, -6, growth differentiation factor-5, and bone morphogenetic protein receptors in the process of experimental spondylosis in mice. J Neurosurg 94:68–75

    PubMed  CAS  Google Scholar 

  56. Nemoto O, Yamagishi M, Yamada H, Kikuchi T, Takaishi H (1997) Matrix metalloproteinase-3 production by human degenerated intervertebral disc. J Spinal Disord 10:493–498

    Article  PubMed  CAS  Google Scholar 

  57. Nerlich AG, Bachmeier BE, Boos N (2005) Expression of fibronectin and TGF-beta1 mRNA and protein suggest altered regulation of extracellular matrix in degenerated disc tissue. Eur Spine J 14:17–26

    Article  PubMed  Google Scholar 

  58. Nishida T (1999) Kinetics of tissue and serum matrix metalloproteinase-3 and tissue inhibitor of metalloproteinases-1 in intervertebral disc degeneration and disc herniation. Kurume Med J 46:39–50

    PubMed  CAS  Google Scholar 

  59. Nishimura K, Mochida J (1998) Percutaneous reinsertion of the nucleus pulposus. An experimental study. Spine 23:1531–1538

    Article  PubMed  CAS  Google Scholar 

  60. Noponen-Hietala N, Virtanen I, Karttunen R, Schwenke S, Jakkula E, Li H, Merikivi R, Barral S, Ott J, Karppinen J, Ala-Kokko L (2005) Genetic variations in IL-6 associate with intervertebral disc disease characterized by sciatica. Pain 114:186–194

    Article  PubMed  CAS  Google Scholar 

  61. Okuda K, Kawase T, Momose M, Murata M, Saito Y, Suzuki H, Wolff LF, Yoshie H (2003) Platelet-rich plasma contains high levels of platelet-derived growth factor and transforming growth factor-beta and modulates the proliferation of periodontally related cells in vitro. J Periodontol 74:849–857

    Article  PubMed  CAS  Google Scholar 

  62. Okuda S, Myoui A, Ariga K, Nakase T, Yonenobu K, Yoshikawa H (2001) Mechanisms of age-related decline in insulin-like growth factor-I dependent proteoglycan synthesis in rat intervertebral disc cells. Spine 26:2421–2426

    Article  PubMed  CAS  Google Scholar 

  63. Okuda S, Nakase T, Yonenobu K, Ono K (2000) Age-dependent expression of transforming growth factor-beta1 (TGF-beta1) and its receptors and age-related stimulatory effect of TGF-beta1 on proteoglycan synthesis in rat intervertebral discs. J Muscle Res 4:151–159

    Google Scholar 

  64. Okuma M, Mochida J, Nishimura K, Sakabe K, Seiki K (2000) Reinsertion of stimulated nucleus pulposus cells retards intervertebral disc degeneration: an in vitro and in vivo experimental study. J Orthop Res 18:988–997

    Article  PubMed  CAS  Google Scholar 

  65. Olmarker K, Larsson K (1998) Tumor necrosis factor alpha and nucleus-pulposus-induced nerve root injury. Spine 23:2538–2544

    Article  PubMed  CAS  Google Scholar 

  66. Osada R, Ohshima H, Ishihara H, Yudoh K, Sakai K, Matsui H, Tsuji H (1996) Autocrine/paracrine mechanism of insulin-like growth factor-1 secretion, and the effect of insulin-like growth factor-1 on proteoglycan synthesis in bovine intervertebral discs. J Orthop Res 14:690–699

    Article  PubMed  CAS  Google Scholar 

  67. Praemer A, Furner S, Rice DP (1999) Musculoskeletal conditions in the United States. American Academy of Orthopaedic Surgeons, Rosemont

    Google Scholar 

  68. Roberts S, Caterson B, Menage J, Evans EH, Jaffray DC, Eisenstein SM (2000) Matrix metalloproteinases and aggrecanase: their role in disorders of the human intervertebral disc. Spine 25:3005–3013

    Article  PubMed  CAS  Google Scholar 

  69. Saal JA, Saal JS, Herzog RJ (1990) The natural history of lumbar intervertebral disc extrusions treated nonoperatively. Spine 15:683–686

    Article  PubMed  CAS  Google Scholar 

  70. Schnake KJ, Schaeren S, Jeanneret B (2006) Dynamic stabilization in addition to decompression for lumbar spinal stenosis with degenerative spondylolisthesis. Spine 31:442–449

    Article  PubMed  Google Scholar 

  71. Seki S, Kawaguchi Y, Chiba K, Mikami Y, Kizawa H, Oya T, Mio F, Mori M, Miyamoto Y, Masuda I, Tsunoda T, Kamata M, Kubo T, Toyama Y, Kimura T, Nakamura Y, Ikegawa S (2005) A functional SNP in CILP, encoding cartilage intermediate layer protein, is associated with susceptibility to lumbar disc disease. Nat Genet 37:607–612

    Article  PubMed  CAS  Google Scholar 

  72. Sobajima S, Shimer AL, Chadderdon RC, Kompel JF, Kim JS, Gilbertson LG, Kang JD (2005) Quantitative analysis of gene expression in a rabbit model of intervertebral disc degeneration by real-time polymerase chain reaction. Spine J 5:14–23

    Article  PubMed  Google Scholar 

  73. Solovieva S, Kouhia S, Leino-Arjas P, Ala-Kokko L, Luoma K, Raininko R, Saarela J, Riihimaki H (2004) Interleukin 1 polymorphisms and intervertebral disc degeneration. Epidemiology 15:626–633

    Article  PubMed  Google Scholar 

  74. Solovieva S, Lohiniva J, Leino-Arjas P, Raininko R, Luoma K, Ala-Kokko L, Riihimaki H (2006) Intervertebral disc degeneration in relation to the COL9A3 and the IL-1ss gene polymorphisms. Eur Spine J 15:613–619

    Article  PubMed  Google Scholar 

  75. Specchia N, Pagnotta A, Toesca A, Greco F (2002) Cytokines and growth factors in the protruded intervertebral disc of the lumbar spine. Eur Spine J 11:145–151

    Article  PubMed  Google Scholar 

  76. Stoll TM, Dubois G, Schwarzenbach O (2002) The dynamic neutralization system for the spine: a multi-center study of a novel non-fusion system. Eur Spine J 11(Suppl. 2):S170–S178

    PubMed  Google Scholar 

  77. Storm EE, Huynh TV, Copeland NG, Jenkins NA, Kingsley DM, Lee SJ (1994) Limb alterations in brachypodism mice due to mutations in a new member of the TGF beta-superfamily. Nature 368:639–643

    Article  PubMed  CAS  Google Scholar 

  78. Sztrolovics R, Alini M, Roughley PJ, Mort JS (1997) Aggrecan degradation in human intervertebral disc and articular cartilage. Biochem J 326:235–241

    PubMed  CAS  Google Scholar 

  79. Takae R, Matsunaga S, Origuchi N, Yamamoto T, Morimoto N, Suzuki S, Sakou T (1999) Immunolocalization of bone morphogenetic protein and its receptors in degeneration of intervertebral disc. Spine 24:1397–1401

    Article  PubMed  CAS  Google Scholar 

  80. Takahashi H, Suguro T, Okazima Y, Motegi M, Okada Y, Kakiuchi T (1996) Inflammatory cytokines in the herniated disc of the lumbar spine. Spine 21:218–224

    Article  PubMed  CAS  Google Scholar 

  81. Takahashi M, Haro H, Wakabayashi Y, Kawa-uchi T, Komori H, Shinomiya K (2001) The association of degeneration of the intervertebral disc with 5a/6a polymorphism in the promoter of the human matrix metalloproteinase-3 gene. J Bone Joint Surg Br 83:491–495

    Article  PubMed  CAS  Google Scholar 

  82. Takegami K, An HS, Kumano F, Chiba K, Thonar EJ, Singh K, Masuda K (2005) Osteogenic protein-1 is most effective in stimulating nucleus pulposus and annulus fibrosus cells to repair their matrix after chondroitinase ABC-induced in vitro chemonucleolysis. Spine J 5:231–238

    Article  PubMed  Google Scholar 

  83. Takegami K, Thonar EJ, An HS, Kamada H, Masuda K (2002) Osteogenic protein-1 enhances matrix replenishment by intervertebral disc cells previously exposed to interleukin-1. Spine 27:1318–1325

    Article  PubMed  Google Scholar 

  84. Thompson JP, Oegema TJ, Bradford DS (1991) Stimulation of mature canine intervertebral disc by growth factors. Spine 16:253–260

    Article  PubMed  CAS  Google Scholar 

  85. Tilkeridis C, Bei T, Garantziotis S, Stratakis CA (2005) Association of a COL1A1 polymorphism with lumbar disc disease in young military recruits. J Med Genet 42:E44

    Article  PubMed  CAS  Google Scholar 

  86. Tim Yoon S, Su Kim K, Li J, Soo Park J, Akamaru T, Elmer WA, Hutton WC (2003) The effect of bone morphogenetic protein-2 on rat intervertebral disc cells in vitro. Spine 28:1773–1780

    Article  PubMed  CAS  Google Scholar 

  87. Tolonen J, Gronblad M, Vanharanta H, Virri J, Guyer RD, Rytomaa T, Karaharju EO (2006) Growth factor expression in degenerated intervertebral disc tissue an immunohistochemical analysis of transforming growth factor beta, fibroblast growth factor and platelet-derived growth factor. Eur Spine J: 15:588–596

    Article  PubMed  Google Scholar 

  88. Tolonen J, Gronblad M, Virri J, Seitsalo S, Rytomaa T, Karaharju E (1995) Basic fibroblast growth factor immunoreactivity in blood vessels and cells of disc herniations. Spine 20:271–276

    Article  PubMed  CAS  Google Scholar 

  89. Tolonen J, Gronblad M, Virri J, Seitsalo S, Rytomaa T, Karaharju E (2001) Transforming growth factor beta receptor induction in herniated intervertebral disc tissue: an immunohistochemical study. Eur Spine J 10:172–176

    Article  PubMed  CAS  Google Scholar 

  90. Tolonen J, Gronblad M, Virri J, Seitsalo S, Rytomaa T, Karaharju EO (1997) Platelet-derived growth factor and vascular endothelial growth factor expression in disc herniation tissue: and immunohistochemical study. Eur Spine J 6:63–69

    Article  PubMed  CAS  Google Scholar 

  91. Urban JP, Smith S, Fairbank JC (2004) Nutrition of the intervertebral disc. Spine 29:2700–2709

    Article  PubMed  Google Scholar 

  92. Videman T, Leppavuori J, Kaprio J, Battie MC, Gibbons LE, Peltonen L, Koskenvuo M (1998) Intragenic polymorphisms of the vitamin D receptor gene associated with intervertebral disc degeneration. Spine 23:2477–2485

    Article  PubMed  CAS  Google Scholar 

  93. Walsh AJ, Bradford DS, Lotz JC (2004) In vivo growth factor treatment of degenerated intervertebral discs. Spine 29:156–163

    Article  PubMed  Google Scholar 

  94. Wehling P (2002) Antiapoptotic and antidegenerative effect of an autologous IL-1ra/IGF-1/PDGF combination on human intervertebral disc cells in vivo The International Society for the study of the lumbar spine. In: 29th Annual Meeting Proceeding, Cleveland, OH, p24

  95. Wehling P, Schulitz KP, Robbins PD, Evans CH, Reinecke JA (1997) Transfer of genes to chondrocytic cells of the lumbar spine. Proposal for a treatment strategy of spinal disorders by local gene therapy. Spine 22:1092–1097

    Article  PubMed  CAS  Google Scholar 

  96. Weibrich G, Kleis WK, Hafner G, Hitzler WE (2002) Growth factor levels in platelet-rich plasma and correlations with donor age, sex, and platelet count. J Craniomaxillofac Surg 30:97–102

    PubMed  Google Scholar 

  97. Weiler C, Nerlich AG, Bachmeier BE, Boos N (2005) Expression and distribution of tumor necrosis factor alpha in human lumbar intervertebral discs: a study in surgical specimen and autopsy controls. Spine 30:44–53

    Google Scholar 

  98. Weiler C, Nerlich AG, Zipperer J, Bachmeier BE, Boos N (2002) 2002 SSE Award competition in basic science: expression of major matrix metalloproteinases is associated with intervertebral disc degradation and resorption. Eur Spine J 11:308–320

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koichi Masuda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masuda, K., An, H.S. Prevention of disc degeneration with growth factors. Eur Spine J 15 (Suppl 3), 422–432 (2006). https://doi.org/10.1007/s00586-006-0149-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-006-0149-1

Keywords

Navigation