Skip to main content

Advertisement

Log in

Release of active and depot GDF-5 after adenovirus-mediated overexpression stimulates rabbit and human intervertebral disc cells

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

To develop new therapeutic options for the treatment of disc degeneration we tested the possibility of overexpression of active growth and differentiation factor (GDF) 5 and of transforming growth factor (TGF) β1 by adenoviral gene transfer and characterized its effect on cell proliferation and matrix synthesis of cultured rabbit and human intervertebral disc cells. Recombinant adenovirus encoding for GDF-5 or TGF-β1 was developed and transgene expression characterized by RT-PCR, western blot and ELISA. Growth and matrix synthesis of transduced cells was measured by [3H]thymidine or [35S]sulfate incorporation. Disc cells expressed the receptors BMPR1A, BMPR1B, and BMPR2, which are relevant for GDF-5 action. Adenovirus efficiently transferred the GDF-5 gene or the TGF-β1 gene to rabbit and human intervertebral disc cells. About 50 ng GDF-5 protein/106 cells per 24 h or 7 ng TGF-β1 protein/106 cells per 24 h was produced. According to western blotting, two GDF-5 forms, with molecular weights consistent with the activated GDF-5 dimer and the proform, were secreted over the 3 weeks following gene transfer. Overexpressed GDF-5 and TGF-β1 were bioactive and promoted growth of rabbit disc cells in monolayer culture. Our results suggest that ex vivo gene delivery of GDF-5 and TGF-β1 is an attractive approach for the release of mature and pre-GDF-5 in surrounding tissue. This leads us to hope that it will prove possible to improve the treatment of degenerative disc disease by means of ex vivo gene transfer of single or multiple growth factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

BMP :

Bone morphogenetic proteins

CHO :

Chinese hamster ovary

ELISA :

Enzyme-linked immunosorbent assay

FCS :

Fetal calf serum

GDF :

Growth and differentiation factor

GFP :

Green fluorescent protein

IVD :

Intervertebral discs

MOI :

Multiplicity of infection

TGF :

Transforming growth factor

References

  1. Adler JH, Schoenbaum M, Silberberg R (1983) Early onset of disk degeneration and spondylosis in sand rats (Psammomys obesus). Vet Pathol 20:1

    PubMed  Google Scholar 

  2. Hirsch C Schajowicz F (1953) Studies on structural changes in the lumbar annulus fibrosus. Acta Orthop Scand 22:184–231

    PubMed  Google Scholar 

  3. Pearce RH, Grimmer BJ, Adams ME (1987) Degeneration and the chemical composition of the human lumbar intervertebral disc. J Orthop Res 5:198–205

    CAS  PubMed  Google Scholar 

  4. Silberberg R, Aufdermaur M, Adler JH (1979) Degeneration of the intervertebral disks and spondylosis in aging sand rats. Arch Pathol Lab Med 103:231–235

    CAS  PubMed  Google Scholar 

  5. Holm S (1996) Nutritional and pathophysiological aspects of the lumbar intervertebral disc. In: Wiesel SW (ed) Lumbar spine, 2nd edn. Saunders, Philadelphia, pp 285–310

  6. Lipson SJ (1996) Biochemistry and cell biology of the intevertebral discs: aging versus degeneration. In: Wiesel SW (ed) Lumbar spine, 2nd edn. Saunders, Philadelphia, pp 310–316

  7. Urban J (1996) Disc biochemistry in relation to function. In: Wiesel SW (ed) Lumbar spine, 2nd edn. Saunders, Philadelphia, pp 271–281

  8. Masuda K, Shirota H, Thonar EJ (1994) Quantification of 35S-labeled proteoglycans complexed to alcian blue by rapid filtration in multiwell plates. Anal Biochem 217:167–175

    Article  CAS  PubMed  Google Scholar 

  9. Gruber HE, Fisher EC Jr, Desai B, Stasky AA, Hoelscher G, Hanley EN Jr (1997) Human intervertebral disc cells from the annulus: three-dimensional culture in agarose or alginate and responsiveness to TGF-beta1. Exp Cell Res 235:13–21

    CAS  PubMed  Google Scholar 

  10. Benz K, Breit S, Lukoschek M, Mau H, Richter W. (2002) Molecular analysis of expansion, differentiation and growth factor treatment of human chondrocytes identifies differentiation markers and growth-related genes. Biochem Biophys Res Commun 293:284–292

    Article  CAS  PubMed  Google Scholar 

  11. Thompson JP, Oegema TR Jr, Bradford DS (1991) Stimulation of mature canine intervertebral disc by growth factors. Spine 16:253–260

    CAS  PubMed  Google Scholar 

  12. Guerne PA, Sublet A, Lotz M (1994) Growth factor responsiveness of human articular chondrocytes: distinct profiles in primary chondrocytes, subcultured chondrocytes, and fibroblasts. J Cell Physiol 158:476–484

    CAS  PubMed  Google Scholar 

  13. Nishida K, Kang JD, Suh JK, Robbins PD, Evans CH, Gilbertson LG (1998) Adenovirus-mediated gene transfer to nucleus pulposus cells. Implications for the treatment of intervertebral disc degeneration. Spine 23:2437–2442

    CAS  PubMed  Google Scholar 

  14. Nishida K, Kang JD, Gilbertson LG, Moon SH, Suh JK, Vogt MT, Robbins PD, Evans CH (1999) Modulation of the biologic activity of the rabbit intervertebral disc by gene therapy: an in vivo study of adenovirus-mediated transfer of the human transforming growth factor beta 1 encoding gene. Spine 24:2419–2425

    Article  CAS  PubMed  Google Scholar 

  15. Boden SD, Andersson GBJ, Anderson DG, Damien C, Ebara S, Helm G, Lane JM, McKay B, Sandhu HS, Seeherman H (2002) Overview of bone morphonetic proteins for spine fusion. Spine 27:S1

    Article  Google Scholar 

  16. Luyten FP (1997) Cartilage-derived morphogenetic protein-1. Int J Biochem Cell Biol 29:1241–1244

    Article  CAS  PubMed  Google Scholar 

  17. Tsumaki N, Nakase T, Miyaji T, Kakiuchi M, Kimura T, Ochi T, Yoshikawa H (2002) Bone morphogenetic protein signals are required for cartilage formation and differently regulate joint development during skeletogenesis. J Bone Miner Res 17:898–906

    CAS  PubMed  Google Scholar 

  18. Hoetten GC, Matsumoto T, Kimura M, Bechtold RF, Kron R, Ohara T, Tanaka H, Satoh Y, Okazaki M, Shirai T, Pan H, Kawai S, Pohl JS, Kudo A (1996) Recombinant human growth/differentiation factor 5 stimulates mesenchyme aggregation and chondrogenesis responsible for the skeletal development of limbs. Growth Factors 13:65–74

    CAS  PubMed  Google Scholar 

  19. Francis-West PH, Abdelfattah A, Chen P, Allen C, Parish J, Ladher R, Allen S, MacPherson S, Luyten FP, Archer CW (1999) Mechanisms of GDF-5 action during skeletal development. Development 126:1305–1315

    CAS  PubMed  Google Scholar 

  20. Buckwalter JA (1995) Aging and degeneration of the human intervertebral disc. Spine 20:1307–1314

    CAS  PubMed  Google Scholar 

  21. Oegema TR Jr (1993) Biochemistry of the intervertebral disc. Clin Sports Med 12:419–439

    PubMed  Google Scholar 

  22. Sprugel KH, McPherson JM, Clowes AW, Ross R (1987) Effects of growth factors in vivo. I. Cell ingrowth into porous subcutaneous chambers. Am J Pathol 129:601–613

    CAS  PubMed  Google Scholar 

  23. Wakefield LM, Winokur TS, Hollands RS, Christopherson K, Levinson AD, Sporn MB (1990) Recombinant latent transforming growth factor beta 1 has a longer plasma half-life in rats than active transforming growth factor beta 1, and a different tissue distribution. J Clin Invest 86:1976–1984

    CAS  PubMed  Google Scholar 

  24. Moon SH, Gilbertson LG, Nishida K, Knaub M, Muzzonigro T, Robbins PD, Evans CH, Kang JD (2000) Human intervertebral disc cells are genetically modifiable by adenovirus-mediated gene transfer: implications for the clinical management of intervertebral disc disorders. Spine 25:2573–2579

    Article  CAS  PubMed  Google Scholar 

  25. Kroeber MW, Unglaub F, Wang H, Schmid C, Thomsen M, Nerlich A, Richter W (2002) New in vivo animal model to create intervertebral disc degeneration and to investigate the effects of therapeutic strategies to stimulate disc regeneration. Spine 27:2684–2690

    Article  PubMed  Google Scholar 

  26. Poller W, Schneider-Rasp S, Liebert U, Merklein F, Thalheimer P, Haack A, Schwaab R, Schmitt C, Brackmann HH (1996) Stabilization of transgene expression by incorporation of E3 region genes into an adenoviral factor IX vector and by transient anti-CD4 treatment of the host. Gene Ther 3:521–530

    CAS  PubMed  Google Scholar 

  27. Gambaryan S, Wagner C, Smolenski A, Walter U, Poller W, Haase W, Kurtz A, Lohmann SM (1998) Endogenous or overexpressed cGMP-dependent protein kinases inhibit cAMP-dependent renin release from rat isolated perfused kidney, microdissected glomeruli, and isolated juxtaglomerular cells. Proc Natl Acad Sci USA 95:9003–9008

    Article  CAS  PubMed  Google Scholar 

  28. Vaandrager AB, Tilly BC, Smolenski A, Schneider-Rasp S, Bot AG, Edixhoven M, Scholte BJ, Jarchau T, Walter U, Lohmann SM, Poller WC, de Jonge HR (1997) cGMP stimulation of cystic fibrosis transmembrane conductance regulator Cl-channels co-expressed with cGMP-dependent protein kinase type II but not type Ibeta. J Biol Chem 272:4195–4200

    Article  CAS  PubMed  Google Scholar 

  29. Graham FL Prevec L (1991) Manipulation of adenovirus vectors. In Clifton (ed) Methods in molecular biology. Human, New York, pp109–128

  30. Wang EA, Rosen V, D’Alessandro JS, Bauduy M, Cordes P, Harada T, Israel DI, Hewick RM, Kerns KM, LaPan P (1990) Recombinant human bone morphogenetic protein induces bone formation. Proc Natl Acad Sci USA 87:2220–2224

    CAS  PubMed  Google Scholar 

  31. Benz K, Breit S, Lukoschek M, Mau H, Richter W (2002) Molecular analysis of expansion, differentiation, and growth factor treatment of human chondrocytes identifies differentiation markers and growth-related genes. Biochem Biophys Res Commun 293:284–292

    Article  CAS  PubMed  Google Scholar 

  32. Chelberg MK, Banks GM, Geiger DF, Oegema TR Jr (1995) Identification of heterogeneous cell populations in normal human intervertebral disc. J Anat 186:43–53

    PubMed  Google Scholar 

  33. Buckwalter JA, Pedrini-Mille A, Pedrini V, Tudisco C (1985) Proteoglycans of human infant intervertebral disc. Electron microscopic and biochemical studies. J Bone Joint Surg Am 67:284–294

    CAS  PubMed  Google Scholar 

  34. Yasuma T, Koh S, Okamura T, Yamauchi Y (1990) Histological changes in aging lumbar intervertebral discs. Their role in protrusions and prolapses. J Bone Joint Surg Am 72:220–229

    CAS  PubMed  Google Scholar 

  35. Maeda S Kokubun S (2000) Changes with age in proteoglycan synthesis in cells cultured in vitro from the inner and outer rabbit annulus fibrosus. Responses to interleukin-1 and interleukin-1 receptor antagonist protein. Spine 25:166–116

    CAS  PubMed  Google Scholar 

  36. Melrose J, Ghosh P, Taylor TK, Hall A, Osti OL, Vernon-Roberts B, Fraser RD (1992) A longitudinal study of the matrix changes induced in the intervertebral disc by surgical damage to the annulus fibrosus. J Orthop Res 10:665–676

    CAS  PubMed  Google Scholar 

  37. Weiler C, Nerlich AG, Zipperer J, Bachmeier BE, Boos N (2002) 2002 SSE Award Competition in Basic Science: expression of major matrix metalloproteinases is associated with intervertebral disc degradation and resorption. Eur Spine J 11:308–320

    Article  CAS  PubMed  Google Scholar 

  38. Roberts AB Sporn MB (1993) Physiological actions and clinical applications of transforming growth factor-beta (TGF-beta). Growth Factors 8:1–9

    CAS  PubMed  Google Scholar 

  39. Sporn MB Roberts AB (1992) Transforming growth factor-beta: recent progress and new challenges. J Cell Biol 119:1017–1021

    CAS  PubMed  Google Scholar 

  40. O’Kane S Ferguson MW (1997) Transforming growth factor beta s and wound healing. Int J Biochem Cell Biol 29:63–78

    CAS  PubMed  Google Scholar 

  41. Trippel SB (1995) Growth factor actions on articular cartilage. J Rheumatol Suppl 43:129–132

    CAS  PubMed  Google Scholar 

  42. Galera P, Redini F, Vivien D, Bonaventure J, Penfornis H, Loyau G, Pujol JP (1992) Effect of transforming growth factor-beta 1 (TGF-beta 1) on matrix synthesis by monolayer cultures of rabbit articular chondrocytes during the dedifferentiation process. Exp Cell Res 200:379–392

    CAS  PubMed  Google Scholar 

  43. Harrison ET Jr, Luyten FP, Reddi AH (1992) Transforming growth factor-beta: its effect on phenotype reexpression by dedifferentiated chondrocytes in the presence and absence of osteogenin. In Vitro Cell Dev Biol 28A: 445–448

    CAS  PubMed  Google Scholar 

  44. Yaeger PC, Masi TL, de Ortiz JL, Binette F, Tubo R, McPherson JM (1997) Synergistic action of transforming growth factor-beta and insulin-like growth factor-I induces expression of type II collagen and aggrecan genes in adult human articular chondrocytes. Exp Cell Res 237:318–325

    Article  CAS  PubMed  Google Scholar 

  45. Jakob M, Demarteau O, Schafer D, Hintermann B, Dick W, Heberer M, Martin I (2001) Specific growth factors during the expansion and redifferentiation of adult human articular chondrocytes enhance chondrogenesis and cartilaginous tissue formation in vitro. J Cell Biochem 81:368–377

    Article  CAS  PubMed  Google Scholar 

  46. Yung LJ, Hall R, Pelinkovic D, Cassinelli E, Usas A, Gilbertson L, Huard J, Kang J (2001) New use of a three-dimensional pellet culture system for human intervertebral disc cells: initial characterization and potential use for tissue engineering. Spine 26:2316–2322

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Regina Hess and Michael Rühle for technical assistance, Jens Pohl, Biopharm GmbH, for the donation of GDF-5 cDNA, and Sven Schneider for the statistical analysis. This work was supported by a grant from the research fund of the Stiftung Orthopädische Universitätsklinik Heidelberg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wiltrud Richter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Kroeber, M., Hanke, M. et al. Release of active and depot GDF-5 after adenovirus-mediated overexpression stimulates rabbit and human intervertebral disc cells. J Mol Med 82, 126–134 (2004). https://doi.org/10.1007/s00109-003-0507-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-003-0507-y

Keywords

Navigation