Skip to main content

Advertisement

Log in

A phenotypic comparison of intervertebral disc and articular cartilage cells in the rat

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

The basic molecular characteristics of intervertebral disc cells are still poorly defined. This study compared the phenotypes of nucleus pulposus (NP), annulus fibrosus (AF) and articular cartilage (AC) cells using rat coccygeal discs and AC from both young and aged animals and a combination of microarray, real-time RT-PCR and immunohistochemistry. Microarray analysis identified 63 genes with at least a fivefold difference in fluorescence intensity between the NP and AF cells and 41 genes with a fivefold or greater difference comparing NP cells and articular chondrocytes. In young rats, the relative mRNA levels, assessed by real-time RT-PCR, of annexin A3, glypican 3 (gpc3), keratin 19 (k19) and pleiotrophin (ptn) were significantly higher in NP compared to AF and AC samples. Furthermore, vimentin (vim) mRNA was higher in NP versus AC, and expression levels of cartilage oligomeric matrix protein (comp) and matrix gla protein (mgp) were lower in NP versus AC. Higher NP levels of comp and mgp mRNA and higher AF levels of gpc3, k19, mgp and ptn mRNA were found in aged compared to young tissue. However, the large differences between NP and AC expression of gpc3 and k19 were obvious even in the aged animals. Furthermore, the differences in expression levels of gpc3 and k19 were also evident at the protein level, with intense immunostaining for both proteins in NP and non-existent immunoreaction in AF and AC. Future studies using different species are required to evaluate whether the expression of these molecules can be used to characterize NP cells and distinguish them from other chondrocyte-like cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Antoniou J, Steffen T, Nelson F, Winterbottom N, Hollander AP, Poole RA, Aebi M, Alini M (1996) The human lumbar intervertebral disc: evidence for changes in the biosynthesis and denaturation of the extracellular matrix with growth, maturation, ageing, and degeneration. J Clin Invest 98:996–1003

    Article  PubMed  CAS  Google Scholar 

  2. Barone LM, Owen TA, Tassinari MS, Bortell R, Stein GS, Lian JB (1991) Developmental expression and hormonal regulation of the rat matrix Gla protein (MGP) gene in chondrogenesis and osteogenesis. J Cell Biochem 46:351–365

    Article  PubMed  CAS  Google Scholar 

  3. Bruehlmann SB, Rattner JB, Matyas JR, Duncan NA (2002) Regional variations in the cellular matrix of the annulus fibrosus of the intervertebral disc. J Anat 201:159–171

    Article  PubMed  Google Scholar 

  4. Buckwalter JA (1995) Aging and degeneration of the human intervertebral disc. Spine 20:1307–1314

    PubMed  CAS  Google Scholar 

  5. Buckwalter JA, Cooper RR, Maynard JA (1976) Elastic fibers in human intervertebral discs. J Bone Joint Surg Am 58:73–76

    PubMed  CAS  Google Scholar 

  6. Buckwalter JA, Smith KC, Kazarien LE, Rosenberg LC, Ungar R (1989) Articular cartilage and intervertebral disc proteoglycans differ in structure: an electron microscopic study. J Orthop Res 7:146–151

    Article  PubMed  CAS  Google Scholar 

  7. Chen J, Yan W, Setton LA (2004) Static compression induces zonal-specific changes in gene expression for extracellular matrix and cytoskeletal proteins in intervertebral disc cells in vitro. Matrix Biol 22:573–583

    Article  PubMed  CAS  Google Scholar 

  8. Dicesare PE, Morgelin M, Mann K, Paulsson M (1994) Cartilage oligomeric matrix protein and thrombospondin 1. Purification from articular cartilage, electron microscopic structure, and chondrocyte binding. Eur J Biochem 223:927–937

    Article  PubMed  CAS  Google Scholar 

  9. Eyre DR (1979) Biochemistry of the intervertebral disc. Int Rev Connect Tissue Res 8:227–291

    PubMed  CAS  Google Scholar 

  10. Filmus J, Selleck SB (2001) Glypicans: proteoglycans with a surprise. J Clin Invest 108:497–501

    Article  PubMed  CAS  Google Scholar 

  11. Fujita N, Miyamoto T, Imai J, Hosogane N, Suzuki T, Yagi M, Morita K, Ninomiya K, Miyamoto K, Takaishi H, Matsumoto M, Morioka H, Yabe H, Chiba K, Watanabe S, Toyama Y, Suda T (2005) CD24 is expressed specifically in the nucleus pulposus of intervertebral discs. Biochem Biophys Res Commun 338:1890–1896

    Article  PubMed  CAS  Google Scholar 

  12. Gerke V, Moss SE (2002) Annexins: from structure to function. Physiol Rev 82:331–371

    PubMed  CAS  Google Scholar 

  13. Gonzalez AD, Kaya M, Shi W, Song H, Testa JR, Penn LZ, Filmus J (1998) OCI-5/GPC3, a glypican encoded by a gene that is mutated in the Simpson-Golabi-Behmel overgrowth syndrome, induces apoptosis in a cell line-specific manner. J Cell Biol 141:1407–1414

    Article  PubMed  CAS  Google Scholar 

  14. Gottschalk D, Fehn M, Patt S, Saeger W, Kirchner T, Aigner T (2001) Matrix gene expression analysis and cellular phenotyping in chordoma reveals focal differentiation pattern of neoplastic cells mimicking nucleus pulposus development. Am J Pathol 158:1571–1578

    PubMed  CAS  Google Scholar 

  15. Hale JE, Fraser JD, Price PA (1988) The identification of matrix Gla protein in cartilage. J Biol Chem 263:5820–5824

    PubMed  CAS  Google Scholar 

  16. Hirakawa K, Hirota S, Ikeda T, Yamaguchi A, Takemura T, Nagoshi J, Yoshiki S, Suda T, Kitamura Y, Nomura S (1994) Localization of the mRNA for bone matrix proteins during fracture healing as determined by in situ hybridization. J Bone Miner Res 9:1551–1557

    Article  PubMed  CAS  Google Scholar 

  17. Iatridis JC, Weidenbaum M, Setton LA, Mow VC (1996) Is the nucleus pulposus a solid or a fluid? Mechanical behaviors of the nucleus pulposus of the human intervertebral disc. Spine 21:1174–1184

    Article  PubMed  CAS  Google Scholar 

  18. Inoue H (1981) Three-dimensional architecture of lumbar intervertebral discs. Spine 6:139–146

    Article  PubMed  CAS  Google Scholar 

  19. Inoue H, Takeda T (1975) Three-dimensional observation of collagen framework of lumbar intervertebral discs. Acta Orthop Scand 46:949–956

    Article  PubMed  CAS  Google Scholar 

  20. Ishii Y, Thomas AO, Guo XE, Hung CT, Chen FH (2006) Localization and distribution of cartilage oligomeric matrix protein in the rat intervertebral disc. Spine 31:1539–1546

    Article  PubMed  Google Scholar 

  21. Johnson WE, Roberts S (2003) Human intervertebral disc cell morphology and cytoskeletal composition: a preliminary study of regional variations in health and disease. J Anat 203:605–612

    Article  PubMed  CAS  Google Scholar 

  22. Langelier E, Suetterlin R, Hoemann CD, Aebi U, Buschmann MD (2000) The chondrocyte cytoskeleton in mature articular cartilage: structure and distribution of actin, tubulin, and vimentin filaments. J Histochem Cytochem 48:1307–1320

    PubMed  CAS  Google Scholar 

  23. Lawton DM, Andrew JG, Marsh DR, Hoyland JA, Freemont AJ (1999) Expression of the gene encoding the matrix gla protein by mature osteoblasts in human fracture non-unions. Mol Pathol 52:92–96

    Article  PubMed  CAS  Google Scholar 

  24. Loeser R, Carlson CS, Tulli H, Jerome WG, Miller L, Wallin R (1992) Articular-cartilage matrix gamma-carboxyglutamic acid-containing protein. Characterization and immunolocalization. Biochem J 282(Pt 1):1–6

    PubMed  CAS  Google Scholar 

  25. Luo X, Pietrobon R, Sun SX, Liu GG, Hey L (2004) Estimates and patterns of direct health care expenditures among individuals with back pain in the United States. Spine 29:79–86

    Article  PubMed  Google Scholar 

  26. Luoma K, Riihimaki H, Luukkonen R, Raininko R, Viikari-Juntura E, Lamminen A (2000) Low back pain in relation to lumbar disc degeneration. Spine 25:487–492

    Article  PubMed  CAS  Google Scholar 

  27. Lyons G, Eisenstein SM, Sweet MB (1981) Biochemical changes in intervertebral disc degeneration. Biochim Biophys Acta 673:443–453

    PubMed  CAS  Google Scholar 

  28. Marchand F, Ahmed AM (1990) Investigation of the laminate structure of lumbar disc anulus fibrosus. Spine 15:402–410

    Article  PubMed  CAS  Google Scholar 

  29. Mariani S, Iughetti L, Bertorelli R, Coviello D, Pellegrini M, Forabosco A, Bernasconi S (2003) Genotype/phenotype correlations of males affected by Simpson-Golabi-Behmel syndrome with GPC3 gene mutations: patient report and review of the literature. J Pediatr Endocrinol Metab 16:225–232

    PubMed  CAS  Google Scholar 

  30. Miller JA, Schmatz C, Schultz AB (1988) Lumbar disc degeneration: correlation with age, sex, and spine level in 600 autopsy specimens. Spine 13:173–178

    Article  PubMed  CAS  Google Scholar 

  31. Mwale F, Roughley P, Antoniou J (2004) Distinction between the extracellular matrix of the nucleus pulposus and hyaline cartilage: a requisite for tissue engineering of intervertebral disc. Eur Cell Mater 8:58–63

    PubMed  CAS  Google Scholar 

  32. Oegema TR Jr (1993) Biochemistry of the intervertebral disc. Clin Sports Med 12:419–439

    PubMed  Google Scholar 

  33. Ohtsuki T, Furuya S, Yamada T, Nomura S, Hata J, Yabe Y, Hosoda Y (1998) Gene expression of noncollagenous bone matrix proteins in the limb joints and intervertebral disks of the twy mouse. Calcif Tissue Int 63:167–172

    Article  PubMed  CAS  Google Scholar 

  34. Pellegrini M, Pilia G, Pantano S, Lucchini F, Uda M, Fumi M, Cao A, Schlessinger D, Forabosco A (1998) Gpc3 expression correlates with the phenotype of the Simpson-Golabi-Behmel syndrome. Dev Dyn 213:431–439

    Article  PubMed  CAS  Google Scholar 

  35. Poiraudeau S, Monteiro I, Anract P, Blanchard O, Revel M, Corvol MT (1999) Phenotypic characteristics of rabbit intervertebral disc cells. Comparison with cartilage cells from the same animals. Spine 24:837–844

    Article  PubMed  CAS  Google Scholar 

  36. Pufe T, Bartscher M, Petersen W, Tillmann B, Mentlein R (2003) Pleiotrophin, an embryonic differentiation and growth factor, is expressed in osteoarthritis. Osteoarthr Cartil 11:260–264

    Article  PubMed  CAS  Google Scholar 

  37. Reno C, Marchuk L, Sciore P, Frank CB, Hart DA (1997) Rapid isolation of total RNA from small samples of hypocellular, dense connective tissues. Biotechniques 22:1082–1086

    PubMed  CAS  Google Scholar 

  38. Risbud MV, Guttapalli A, Stokes DG, Hawkins D, Danielson KG, Schaer TP, Albert TJ, Shapiro IM (2006) Nucleus pulposus cells express HIF-1alpha under normoxic culture conditions: a metabolic adaptation to the intervertebral disc microenvironment. J Cell Biochem 98:152–159

    Article  PubMed  CAS  Google Scholar 

  39. Rosenberg K, Olsson H, Morgelin M, Heinegard D (1998) Cartilage oligomeric matrix protein shows high affinity zinc-dependent interaction with triple helical collagen. J Biol Chem 273:20397–20403

    Article  PubMed  CAS  Google Scholar 

  40. Schwarzer AC, Aprill CN, Derby R, Fortin J, Kine G, Bogduk N (1994) The relative contributions of the disc and zygapophyseal joint in chronic low back pain. Spine 19:801–806

    Article  PubMed  CAS  Google Scholar 

  41. Semenza GL, Agani F, Booth G, Forsythe J, Iyer N, Jiang BH, Leung S, Roe R, Wiener C, Yu A (1997) Structural and functional analysis of hypoxia-inducible factor 1. Kidney Int 51:553–555

    Article  PubMed  CAS  Google Scholar 

  42. Song HH, Filmus J (2002) The role of glypicans in mammalian development. Biochim Biophys Acta 1573:241–246

    PubMed  CAS  Google Scholar 

  43. Stevens JW, Kurriger GL, Carter AS, Maynard JA (2000) CD44 expression in the developing and growing rat intervertebral disc. Dev Dyn 219:381–390

    Article  PubMed  CAS  Google Scholar 

  44. Stosiek P, Kasper M, Karsten U (1988) Expression of cytokeratin and vimentin in nucleus pulposus cells. Differentiation 39:78–81

    Article  PubMed  CAS  Google Scholar 

  45. Tapp H, Hernandez DJ, Neame PJ, Koob TJ (1999) Pleiotrophin inhibits chondrocyte proliferation and stimulates proteoglycan synthesis in mature bovine cartilage. Matrix Biol 18:543–556

    Article  PubMed  CAS  Google Scholar 

  46. Tare RS, Oreffo RO, Clarke NM, Roach HI (2002) Pleiotrophin/Osteoblast-stimulating factor 1: dissecting its diverse functions in bone formation. J Bone Miner Res 17:2009–2020

    Article  PubMed  CAS  Google Scholar 

  47. Trout JJ, Buckwalter JA, Moore KC (1982) Ultrastructure of the human intervertebral disc: II. Cells of the nucleus pulposus. Anat Rec 204: 307–314

    Article  PubMed  CAS  Google Scholar 

  48. Trout JJ, Buckwalter JA, Moore KC, Landas SK (1982) Ultrastructure of the human intervertebral disc. I. Changes in notochordal cells with age. Tissue Cell 14:359–369

    Article  PubMed  CAS  Google Scholar 

  49. Viebahn C, Lane EB, Ramaekers FC (1988) Keratin and vimentin expression in early organogenesis of the rabbit embryo. Cell Tissue Res 253:553–562

    Article  PubMed  CAS  Google Scholar 

  50. Yu J, Winlove PC, Roberts S, Urban JP (2002) Elastic fibre organization in the intervertebral discs of the bovine tail. J Anat 201:465–475

    Article  PubMed  Google Scholar 

  51. Zhang H, Marshall KW, Tang H, Hwang DM, Lee M, Liew CC (2003) Profiling genes expressed in human fetal cartilage using 13,155 expressed sequence tags. Osteoarthr Cartil 11:309–319

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sibylle Grad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, C.R., Sakai, D., Nakai, T. et al. A phenotypic comparison of intervertebral disc and articular cartilage cells in the rat. Eur Spine J 16, 2174–2185 (2007). https://doi.org/10.1007/s00586-007-0475-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-007-0475-y

Keywords

Navigation