Skip to main content

Advertisement

Log in

Intra- and inter-specific variations in the copy number of two types of retrotransposons from the ectomycorrhizal basidiomycete Tricholoma matsutake

  • Short Note
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

To explore intra- and inter-specific variations of the ectomycorrhizal basidiomycete Tricholoma matsutake that produces the fruit body “matsutake”, we carried out real-time PCR analysis based on two types of retrotransposons, one designated marY1, which resembles a retrovirus carrying the long terminal repeat (LTR) and the other marY2N, which resembles mRNA carrying the polyadenylated tail. Calculation based on the average genome size of homobasidiomycetes (34 Mbp) shows that ca. 5.5% of the total genome of T. matsutake isolated from Asia is made up of these retrotransposons, whereas they occupy ca. 1.4% in the isolates from Morocco, ca. 0.8% in isolates from Mexico, and ca. 0.5% in Tricholoma magnivelare, the species which produces “American matsutake”. Other Tricholoma spp. that produce fruit bodies similar to those of T. matsutake, such as T. bakamatsutake, T. fulvocastaneum, and T. robustum, carry them in the region less than 0.05% of their total genome. Copy number of LTR of marY1 is consistently and markedly higher than that of the coding regions of marY1 and marY2N. Data suggest that retrotransposons are deeply involved in evolution of the ectomycorrhizal symbiont.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bushman F (2002) Lateral DNA transfer: mechanisms and consequences. Cold Spring Harbor, New York, pp 1–448

    Google Scholar 

  • Deininger P (1989) SINEs: short interspersed repeated DNA elements in higher eucaryotes. In: Berg DE, Howe MM (eds) Mobile DNA. American Society for Microbiology, Washington, DC, pp 619–636

    Google Scholar 

  • Farman ML, Eto Y, Nakao T, Tosa Y, Nakayashiki H, Mayama S, Leong SA (2002) Analysis of the structure of the AVR1-CO39 avirulence locus in virulent rice-infecting isolates of Magnaporthe grisea. Mol Plant-Microb Interact 15:6–16

    CAS  Google Scholar 

  • Gibson UA, Heid CA, Williams PM (1996) A novel method for real-time quantitative RT-PCR. Genome Res 6:995–1001

    CAS  PubMed  Google Scholar 

  • Heid CA, Stevens J, Livak KJ, Williams M (1996) Real-time quantitative PCR. Genome Res 6:986–994

    CAS  PubMed  Google Scholar 

  • Higuchi R, Dollinger G, Walsh PS, Griffith R (1992) Simultaneous amplification and detection of specific DNA sequences. Bio/Technology 10:413–417

    Article  CAS  PubMed  Google Scholar 

  • Hosford D, Pilz D, Molina R, Amaranthus M (1997) Ecology and management of the commercially harvested American matsutake mushroom. USDA-Forest service PNW-GTR412, pp 1–68

  • Hutchison C III, Hardies SC, Loeb DD, Shehee WR, Edgell MH (1989) LINEs and related retroposons: long interspersed repeated sequences in the eucaryotic genome. In: Berg DE, Howe MM (eds) Mobile DNA. American Society for Microbiology, Washington, DC, pp 593–617

    Google Scholar 

  • Jordan IK, Rogozin IB, Glazko GV, Koonin EV (2003) Origin of a substantial fraction of human regulatory sequences from transposable elements. Trends Genet 19:68–72

    Google Scholar 

  • Kang S, Lebrun MH, Farrell L, Valent B (2001) Gain of virulence caused by insertion of a Pot3 transposon in a Magnaporthe grisea avirulence gene. Mol Plant-Microb Interact 14:671–674

    CAS  Google Scholar 

  • Lichter A, Gaventa JM, Ciuffetti LM (2002) Chromosome-based molecular characterization of pathogenic and non-pathogenic wheat isolates of Pyrenophora tritici-repentis. Fungal Genet Biol 37:180–189

    Article  CAS  PubMed  Google Scholar 

  • Martinez JP, Oesch NW, Ciuffetti LM (2004) Characterization of the multiple-copy host-selective toxin gene, toxB, in pathogenic and nonpathogenic isolates of Pyrenophora tritici-repentis. Mol Plant-Microb Interact 17:467–474

    CAS  Google Scholar 

  • Murata H, Miyazaki Y (2001) Expression of marY1, a gypsy-type LTR-retroelement from the ectomycorrhizal homobasidiomycete Tricholoma matsutake, in the budding yeast Saccharomyces cerevisiae. Biosci Biotechnol Biochem 65:993–995

    Article  CAS  PubMed  Google Scholar 

  • Murata H, Yamada A (2000) marY1, a member of the gypsy group of long terminal repeat retroelements from the ectomycorrhizal basidiomycete Tricholoma matsutake. Appl Environ Microbiol 66:3642–3645

    Article  CAS  PubMed  Google Scholar 

  • Murata H, Miyazaki Y, Babasaki K (2001a) The long terminal repeat (LTR) sequence of marY1, a retroelement from the ectomycorrhizal homobasidiomycete Tricholoma matsutake, is highly conserved in various higher fungi. Biosci Biotechnol Biochem 65:2297–2300

    Article  CAS  PubMed  Google Scholar 

  • Murata H, Miyazaki Y, Yamada A (2001b) marY2N, a LINE-like non-long terminal repeat (non-LTR) retroelement from the ectomycorrhizal homobasidiomycete Tricholoma matsutake. Biosci Biotechnol Biochem 65:2301–2305

    Article  CAS  PubMed  Google Scholar 

  • Murata H, Babasaki K, Miyazaki Y, Yamada A (2002) Genetic evidence that two types of retroelements evolved through different pathways in ectomycorrhizal homobasidiomycetes Tricholoma spp. Biosci Biotechnol Biochem 66:1880–1886

    Article  CAS  PubMed  Google Scholar 

  • Murata H, Babasaki K, Yamada A (2005) Highly polymorphic DNA markers to specify strains of the ectomycorrhizal basidiomycete Tricholoma matsutake based on σ marY1 , the long terminal repeat of gypsy-type retroelement marY1. Mycorrhiza 15:179–186

    Article  CAS  PubMed  Google Scholar 

  • Nakayama K, Nakanishi J (2004) Tricholoma matsutake in Xichang, Sichuan and Chuxioug, Yunnan, China. Abstract of the 48th annual meeting of the Mycological Society of Japan, p 45

  • Nekrutenko A, Li W-H (2001) Transposable elements are found in a large number of human protein-coding genes. Trends Genet 17:619–621

    Google Scholar 

  • Nishimura M, Hayashi N, Jwa N-S, Lau GW, Hamer JE, Hasebe A (2000) Insertion of the LINE retrotransposon MGL causes a conidiophore pattern mutation in Magnaporthe grisea. Mol Plant-Microb Interact 13:892–894

    CAS  Google Scholar 

  • Pöggeler S, Kempken F (2004) Mobile genetic elements in mycelial fungi. In: Kück U (ed) Genetics and biotechnology, 2nd edn. In: Esser K (ed) The Mycota II. Springer, Berlin Heidelberg New York, pp. 165–198

  • Royer JC, Hintz WE, Horgen PA (1991) Efficient protoplast formation and electrophoretic karyotype analysis of Agaricus bisporus. In: van Griensven LJLD (ed) Genetics and breeding of Agaricus. Pudoc, Waganingen, pp 52–61

    Google Scholar 

  • Shull V, Hamer JE (1996) Rearrangement at a DNA-fingerprint locus in the rice blast fungus. Curr Genet 30:263–271

    Google Scholar 

  • Talbot NJ, Salch YP, Ma M, Hamer JE (1993) Karyotypic variation within clonal lineages of the rice blast fungus, Magnaporthe grisea. Appl Environ Microbiol 59:585–593

    CAS  Google Scholar 

  • The Human Genome Sequencing Consortium (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Google Scholar 

  • van de Lagemaat LN, Landry JR, Mager DL, Medstrand P (2003) Transposable elements in mammals promote regulatory variation and diversification of genes with specialized functions. Trends Genet 19:530–536

    Google Scholar 

  • Walz M (2004) Electrophoretic karyotyping. In: Esser K, Kück U (eds) The Mycota II, a comprehensive treatise on fungi as experimental systems for basic and applied research: genetics and biotechnology, 2nd edn. Springer, Berlin Heidelberg New York, pp 53–70

    Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Ministry of Agriculture, Forestry, and Fishery of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitoshi Murata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murata, H., Babasaki, K. Intra- and inter-specific variations in the copy number of two types of retrotransposons from the ectomycorrhizal basidiomycete Tricholoma matsutake. Mycorrhiza 15, 381–386 (2005). https://doi.org/10.1007/s00572-005-0369-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-005-0369-y

Keywords

Navigation