Skip to main content
Log in

Seasonal dynamics of Boletus edulis and Lactarius deliciosus extraradical mycelium in pine forests of central Spain

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

The annual belowground dynamics of extraradical soil mycelium and sporocarp production of two ectomycorrhizal fungi, Boletus edulis and Lactarius deliciosus, have been studied in two different pine forests (Pinar Grande and Pinares Llanos, respectively) in Soria (central Spain). Soil samples (five per plot) were taken monthly (from September 2009 to August 2010 in Pinar Grande and from September 2010 to September 2011 in Pinares Llanos) in eight permanent plots (four for each site). B. edulis and L. deliciosus extraradical soil mycelium was quantified by real-time polymerase chain reaction, with DNA extracted from soil samples, using specific primers and TaqMan® probes. The quantities of B. edulis soil mycelium did not differ significantly between plots, but there was a significant difference over time with a maximum in February (0.1576 mg mycelium/g soil) and a minimum in October (0.0170 mg mycelium/g soil). For L. deliciosus, significant differences were detected between plots and over time. The highest amount of mycelium was found in December (1.84 mg mycelium/g soil) and the minimum in February (0.0332 mg mycelium/g soil). B. edulis mycelium quantities were positively correlated with precipitation of the current month and negatively correlated with the mean temperature of the previous month. Mycelium biomass of L. deliciosus was positively correlated with relative humidity and negatively correlated with mean temperature and radiation. No significant correlation between productivity of the plots with the soil mycelium biomass was observed for any of the two species. No correlations were found between B. edulis sporocarp production and weather parameters. Sporocarp production of L. deliciosus was positively correlated with precipitation and relative humidity and negatively correlated with maximum and minimum temperatures. Both species have similar distribution over time, presenting an annual dynamics characterized by a seasonal variability, with a clear increase on the amounts of biomass during the coldest months of the year. Soil mycelial dynamics of both species are strongly dependent on the weather.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agerer R (2001) Exploration types of ectomycorrhizae. Mycorrhiza 11:107–114

    Article  Google Scholar 

  • Agerer R (2006) Fungal relationships and structural identity of their ectomycorrhizae. Mycol Prog 5:67–107

    Article  Google Scholar 

  • Ágreda T (2012) Influencia de la edad del arbolado en la fructificación de hongos silvestres comestibles en un bosque de Pinus pinaster Ait. de Soria. ETSIIAA, Palencia

  • Águeda B, Parladé J, Fernández-Toirán LM, Cisneros O, María de Miguel A, Pilar Modrego M, Martínez-Pena F, Pera J (2008) Mycorrhizal synthesis between Boletus edulis species complex and rockroses (Cistus sp.). Mycorrhiza 18:443–449

    Article  PubMed  Google Scholar 

  • Anderson IC, Cairney JWG (2004) Diversity and ecology of soil fungal communities: increased understanding through the application of molecular techniques. Environ Microbiol 6:769–779

    Article  PubMed  CAS  Google Scholar 

  • Anderson IC, Cairney JWG (2007) Ectomycorrhizal fungi: exploring the mycelial frontier. FEMS Microbiol Rev 31:388–406

    Article  PubMed  CAS  Google Scholar 

  • Barroetaveña C, La Manna L, Alonso MV (2008) Variables affecting Suillus luteus fructification in ponderosa pine plantations of Patagonia (Argentina). For Ecol Manag 256:1868–1874

    Article  Google Scholar 

  • Boa E (2004) Wild edible fungi: a global overview of their use and importance to people. Non-wood forest products, vol. 17. FAO, Rome, p 147

    Google Scholar 

  • Bonet JA, Fischer CR, Colinas C (2004) The relationship between forest age and aspect on the production of sporocarps of ectomycorrhizal fungi in Pinus sylvestris forests of the central Pyrenees. For Ecol Manag 203:157–175

    Article  Google Scholar 

  • Bonet JA, Palahí M, Colinas C, Pukkala T, Fischer CR, Miina J, Martínez de Aragón J (2010) Modelling the production and species richness of wild mushrooms in pine forests of the Central Pyrenees in northeastern Spain. Can J For Res 40:347–356

    Article  Google Scholar 

  • Bonet JA, de Miguel S, Martínez de Aragón J, Pukkala T, Palahí M (2012) Immediate effect of thinning on the yield of Lactarius group deliciosus in Pinus pinaster forests in Northeastern Spain. For Ecol Manag 265:211–217

    Article  Google Scholar 

  • Buée M, Maurice J-P, Zeller B, Andrianarisoa S, Ranger J, Courtecuisse R, Marçais B, Fo LT (2011) Influence of tree species on richness and diversity of epigeous fungal communities in a French temperate forest stand. Fungal Ecol 4:22–31

    Article  Google Scholar 

  • Büntgen U, Hv K, Egli S (2012) Linking climate variability to mushroom productivity and phenology. Front Ecol Environ 10:14–19

    Article  Google Scholar 

  • Cairney JWG (2012) Extramatrical mycelia of ectomycorrhizal fungi as moderators of carbon dynamics in forest soil. Soil Biol Biochem 47:198–208

    Article  CAS  Google Scholar 

  • Cannon PF, Kirk PM (2007) Fungal families of the world. CAB International, Wallingford, p 456

    Google Scholar 

  • Courty P-E, Buée M, Diedhiou AG, Frey-Klett P, Le Tacon F, Rineau F, Turpault M-P, Uroz S, Garbaye J (2010) The role of ectomycorrhizal communities in forest ecosystem processes: new perspectives and emerging concepts. Soil Biol Biochem 42:679–698

    Article  CAS  Google Scholar 

  • De la Varga H, Águeda B, Martínez-Peña F, Parladé J, Pera J (2012) Quantification of extraradical soil mycelium and ectomycorrhizas of Boletus edulis in a Scots pine forest with variable sporocarp productivity. Mycorrhiza 22:59–68

    Article  PubMed  Google Scholar 

  • Egli S (2011) Mycorrhizal mushroom diversity and productivity—an indicator of forest health? Ann For Sci 68:81–88

    Article  Google Scholar 

  • Egli S, Ayer F, Peter M, Eilmann B, Rigling A (2010) Is forest mushroom productivity driven by tree growth? Results from a thinning experiment. Ann For Sci 67:509. doi:10.1051/forest/2010011

    Article  Google Scholar 

  • Fernández-Toirán LM, Ágreda T, Olano JM (2006) Stand age and sampling year effect on the fungal fruit body community in Pinus pinaster forests in central Spain. Can J Bot 84:1249–1258. doi:10.1139/b06-087

    Article  Google Scholar 

  • Fitter A, Garbaye J (1994) Interactions between mycorrhizal fungi and other soil organisms. Plant Soil 159:123–132

    Google Scholar 

  • Guidot A, Debaud JC, Marmeisse R (2002) Spatial distribution of the below-ground mycelia of an ectomycorrhizal fungus inferred from specific quantification of its DNA in soil samples. FEMS Microbiol Ecol 42:477–486

    Article  PubMed  CAS  Google Scholar 

  • Hagerberg D, Wallander H (2002) The impact of forest residue removal and wood ash amendment on the growth of the ectomycorrhizal external mycelium. FEMS Microbiol Ecol 39(2):139–146

    Article  PubMed  CAS  Google Scholar 

  • Hortal S, Pera J, Galipienso L, Parladé J (2006) Molecular identification of the edible ectomycorrhizal fungus Lactarius deliciosus in the symbiotic and extraradical mycelium stages. J Biotechnol 126:123–134

    Article  PubMed  CAS  Google Scholar 

  • Hortal S, Pera J, Parladé J (2008) Tracking mycorrhizas and extraradical mycelium of the edible fungus Lactarius deliciosus under field competition with Rhizopogon spp. Mycorrhiza 18:69–77

    Article  PubMed  Google Scholar 

  • Hortal S, Pera J, Parladé J (2009) Field persistence of edible ectomycorrhizal fungus Lactarius deliciosus: effects of inoculation strain, initial colonization level, and site characteristics. Mycorrhiza 19:167–177

    Article  PubMed  Google Scholar 

  • Hutchison JL (1999) Lactarius. In: Cairney JWG, Chambers SM (eds) Ectomycorrhizal fungi: key genera in profile. Springer, Berlin, pp 269–285

    Chapter  Google Scholar 

  • Hynes MM, Smith ME, Zasoski RJ, Bledsoe CS (2010) A molecular survey of ectomycorrhizal hyphae in a California QuercusPinus woodland. Mycorrhiza 20:265–274

    Article  PubMed  CAS  Google Scholar 

  • Kauserud H, Stige LC, Vik JO, Økland RH, Høiland K, Stenseth NC (2008) Mushroom fruiting and climate change. Proc Natl Acad Sci 105:3811–3814

    Article  PubMed  CAS  Google Scholar 

  • Kennedy P, Bergemann SE, Hortal S, Burns T (2007) Determining the outcome of field-based competition between two Rhizopogon species using real-time PCR. Mol Ecol 16:881–890

    Article  PubMed  CAS  Google Scholar 

  • Kjøller R (2006) Disproportionate abundance between ectomycorrhizal root tips and their associated mycelia. FEMS Microbiol Ecol 58:214–224

    Article  PubMed  Google Scholar 

  • Laganà A, Salerni E, Barluzzi C, Perini C, De Dominicis V (2002) Macrofungi as long-term indicators of forest health and management in central Italy. Cryptogam Mycol 23:39–50

    Google Scholar 

  • Landeweert R, Veenman C, Kuyper TW, Fritze H, Wernars K, Smit E (2003) Quantification of ectomycorrhizal mycelium in soil by real-time PCR compared to conventional quantification techniques. FEMS Microbiol Ecol 45:283–292

    Article  PubMed  CAS  Google Scholar 

  • Majdi H, Truus L, Johansson U, Nylund J-E, Wallander H (2008) Effects of slash retention and wood ash addition on fine root biomass and production and fungal mycelium in a Norway spruce stand in SW Sweden. For Ecol Manag 255(7):2109–2117

    Article  Google Scholar 

  • Martínez de Aragón J, Bonet JA, Fischer CR, Colinas C (2007a) Productivity of ectomycorrhizal and selected edible saprotrophic fungi in pine forests of the pre-Pyrenees mountains, Spain: predictive equations for forest management of mycological resources. For Ecol Manag 252:239–256

    Article  Google Scholar 

  • Martínez de Aragón J, Riera P, Giergiczny M, Colinas C (2007b) Value of wild mushroom picking as an environmental service. Policy Econ 13:419–424

    Article  Google Scholar 

  • Martínez-Peña F (2008) Producción de carpóforos de macromicetes epigeos en masas ordenadas de Pinus Sylvestris L. Doctoral thesis, Universidad Politécnica de Madrid, Madrid

  • Martínez-Peña F, Ágreda T, Águeda B, Ortega-Martínez P, Fernández-Toirán LM (2012) Edible sporocarp production by age class in a Scots pine stand in Northern Spain. Mycorrhiza 22:167–174

    Article  PubMed  Google Scholar 

  • Mello A, Ghignone S, Vizzini A, Sechi C, Ruiu P, Bonfante P (2006) ITS primers for the identification of marketable boletes. J Biotechnol 121:318–329

    Article  PubMed  CAS  Google Scholar 

  • Nilsson LO, Wallander H (2003) Production of external mycelium by ectomycorrhizal fungi in a norway spruce forest was reduced in response to nitrogen fertilization. New Phytol 158:409–416

    Article  Google Scholar 

  • Nilsson L, Bååth E, Falkengren-Grerup U, Wallander H (2007) Growth of ectomycorrhizal mycelia and composition of soil microbial communities in oak forest soils along a nitrogen deposition gradient. Oecologia 153:375–384

    Article  PubMed  Google Scholar 

  • Oort AJP (1981) Nutritional requirements of Lactarius species and cultural characters in relation to taxonomy. Serie Ver Km Ned Akad Wet Natuur 76:1–95

    Google Scholar 

  • Ortega-Martínez P, Águeda B, Fernández-Toirán LM, Martínez-Peña F (2011) Tree age influences on the development of edible ectomycorrhizal fungi sporocarps in Pinus sylvestris stands. Mycorrhiza 21:65–70

    Article  PubMed  Google Scholar 

  • Parladé J, Pera J, Luque J (2004) Evaluation of mycelial inocula of edible Lactarius species for the production of Pinus pinaster and P. sylvestris mycorrhizal seedlings under greenhouse conditions. Mycorrhiza 14:171–176

    Article  PubMed  Google Scholar 

  • Parladé J, Hortal S, Pera J, Galipienso L (2007) Quantitative detection of Lactarius deliciosus extraradical soil mycelium by real-time PCR and its application in the study of fungal persistence and interspecific competition. J Biotechnol 128:14–23

    Article  PubMed  Google Scholar 

  • Parladé J, De la Varga H, De Miguel A, Sáez R, Pera J (2013) Quantification of extraradical mycelium of Tuber melanosporum in soils from truffle orchards in northern Spain. Mycorrhiza 23:99–106

    Google Scholar 

  • Peintner U, Iotti M, Klotz P, Bonuso E, Zambonelli A (2007) Soil fungal communities in a Castanea sativa (chestnut) forest producing large quantities of Boletus edulis sensu lato (porcini): where is the mycelium of porcini? Environ Microbiol 9:880–889

    Article  PubMed  CAS  Google Scholar 

  • Peter M, Ayer F, Egli S, Honegger R (2001) Above- and below-ground community structure of ectomycorrhizal fungi in three Norway spruce (Picea abies) stands in Switzerland. Can J Bot 79:1134–1151

    Article  Google Scholar 

  • Pinna S, Gévry MF, Côté M, Sirois L (2010) Factors influencing fructification phenology of edible mushrooms in a boreal mixed forest of Eastern Canada. For Ecol Manag 260:294–301

    Article  Google Scholar 

  • Rineau F, Maurice J-P, Nys C, Voiry H, Garbaye J (2010) Forest liming durably impact the communities of ectomycorrhizas and fungal epigeous fruiting bodies. Ann For Sci 67:110–110

    Article  Google Scholar 

  • Salerni E, Perini C (2004) Experimental study for increasing productivity of Boletus edulis sl in Italy. For Ecol Manag 201:161–170

    Article  Google Scholar 

  • Salerni E, Laganà A, Perini C, Loppi S, De Dominicis V (2002) Effects of temperature and rainfall on fruiting of macrofungi in oak forests of the Mediterranean area. Isr J Plant Sci 50:189–198

    Article  Google Scholar 

  • Savoie J-M, Largeteau M (2011) Production of edible mushrooms in forests: trends in development of a mycosilviculture. Appl Microbiol Biotechnol 89:971–979

    Article  PubMed  CAS  Google Scholar 

  • Schubert R, Raidl S, Funk R, Bahnweg G, Muller-Starck G, Agerer R (2003) Quantitative detection of agar-cultivated and rhizotron-grown Piloderma croceum Erikss. & Hjortst. by ITS1-based fluorescent PCR. Mycorrhiza 13:159–165

    Article  PubMed  CAS  Google Scholar 

  • Sims S, Hendricks J, Mitchell R, Kuehn K, Pecot S (2007) Nitrogen decreases and precipitation increases ectomycorrhizal extramatrical mycelia production in a longleaf pine forest. Mycorrhiza 17:299–309

    Article  PubMed  CAS  Google Scholar 

  • Straatsma G, Fo A, Egli S (2001) Species richness, abundance, and phenology of fungal fruit bodies over 21 years in a Swiss forest plot. Mycol Res 105:515–523

    Article  Google Scholar 

  • Suz LM, Martin MP, Oliach D, Fischer CR, Colinas C (2008) Mycelial abundance and other factors related to truffle productivity in Tuber melanosporumQuercus ilex orchards. FEMS Mycrobiol Lett 285:72–78

    Article  CAS  Google Scholar 

  • Taylor AFS (2002) Fungal diversity in ectomycorrhizal communities: sampling effort and species detection. Plant Soil 244:19–28

    Article  CAS  Google Scholar 

  • Treseder KK, Schimel JP, Garcia MO, Whiteside MD (2010) Slow turnover and production of fungal hyphae during a Californian dry season. Soil Biol Biochem 42:1657–1660

    Article  CAS  Google Scholar 

  • Van der Linde S, Alexander IJ, Anderson IC (2009) Spatial distribution of sporocarps of stipitate hydnoid fungi and their belowground mycelium. FEMS Microbiol Ecol 69:344–352

    Article  PubMed  Google Scholar 

  • Wallander H, Nilsson LO, Hagerberg D, Bååth E (2001) Estimation of the biomass and seasonal growth of external mycelium of ectomycorrhizal fungi in the field. New Phytol 151:753–760

    Article  CAS  Google Scholar 

  • Wallander H, Ekblad A, Bergh J (2011) Growth and carbon sequestration by ectomycorrhizal fungi in intensively fertilized Norway spruce forests. For Ecol Manag 262:999–1007

    Article  Google Scholar 

  • Yun W, Hall IR (2004) Edible ectomycorrhizal mushrooms: challenges and achievements. Can J Bot 82:1063–1073

    Article  Google Scholar 

Download references

Acknowledgments

Financial support for this research was provided by the Instituto Nacional de Investigaciones Agroalimentarias (INIA, Spain), projects RTA2006-00095-CO2 and RM2010-00002-CO3; the Ministerio de Economía y Competitividad (MINECO, Spain), project AGL2009-12884-C03; and the European Regional Development Fund. This work is part of the doctorate of H. De la Varga, financed by the INIA (Spain). Technical collaboration from the Unitat de Genòmica, Serveis Cientificotècnics, Universitat de Barcelona is appreciated. We acknowledge the invaluable help of the staff of Centro de Investigación Forestal de Valonsadero involved in the maintenance of the experimental plots.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herminia De la Varga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De la Varga, H., Águeda, B., Ágreda, T. et al. Seasonal dynamics of Boletus edulis and Lactarius deliciosus extraradical mycelium in pine forests of central Spain. Mycorrhiza 23, 391–402 (2013). https://doi.org/10.1007/s00572-013-0481-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-013-0481-3

Keywords

Navigation