Skip to main content
Log in

Quantification of extraradical soil mycelium and ectomycorrhizas of Boletus edulis in a Scots pine forest with variable sporocarp productivity

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

The availability of most edible ectomycorrhizal mushrooms depends on their natural fructification. Sporocarp formation of these fungi is linked to habitat characteristics and climate conditions, but these data alone do not explain all the trends of fungal fruiting and dynamics. It could be hypothesized that the amount of soil mycelia could also be related to the production of carpophores. Soil samples (five cylinders of 250 cm3 per plot) were taken monthly, from September to November, in five fenced permanent plots (5 × 5 m) in Pinar Grande (Soria, Spain), a Pinus sylvestris stand situated in the north of the Sistema Ibérico mountain range. Plots were chosen to establish a gradient of Boletus edulis productivity from 0 to 38.5 kg/ha year, according to the mean fresh weight of sporocarps collected during the last 10 years. B. edulis ectomycorrhizal root tips were identified in each soil sample according to its morphology and counted. DNA extractions were performed with the PowerSoilTM DNA Isolation Kit and quantification of extraradical soil mycelium by real-time polymerase chain reaction using specific primers and a TaqMan® probe. The concentration of soil mycelium of B. edulis (mg mycelium/g soil) did not differ significantly between plots (p = 0.1397), and sampling time (p = 0.7643) within the fructification period. The number of mycorrhizal short roots per soil volume showed significant differences between the plots (p = 0.0050) and the three sampling times (p < 0.0001). No significant correlation between the number of mycorrhizas and the productivity of the plot (kg of B. edulis/ha year) was detected (p = 0.615). A statistically significant positive correlation (p = 0.0481) was detected between the concentration of mycelia of B. edulis in the soil samples and the presence of short roots mycorrhizal with B. edulis in these samples. The productivity of the plots, in terms of sporocarps produced during the last 10 years, was not correlated either with the concentration of soil mycelium or with the presence or abundance of ectomycorrhizas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agerer R (2001) Exploration types of ectomycorrhizae: a proposal to classify ectomycorrhizal mycelial systems according to their patterns of differentiation and putative ecological importance. Mycorrhiza 11:107–114

    Article  Google Scholar 

  • Águeda B, Parladé J, Fernández-Toiran LM, Cisneros Ó, de Miguel AM, Modrego MP, Martínez-Peña F, Pera J (2008) Mycorrhizal synthesis between Boletus edulis species complex and rockroses (Cistus sp.). Mycorrhiza 18:443–449

    Article  PubMed  Google Scholar 

  • Anderson IC, Cairney JWG (2004) Diversity and ecology of soil fungal communities: increased understanding through the application of molecular techniques. Environ Microbiol 6:769–779

    Article  PubMed  CAS  Google Scholar 

  • Barroetaveña C, La Manna L, Alonso MV (2008) Variables affecting Suillus luteus fructification in ponderosa pine plantations of Patagonia (Argentina). For Ecol Manage 256:1868–1874

    Article  Google Scholar 

  • Bin L, Jin-Ping Z, Wei-Guo H, Sheng Y, Smith DL (2008) PCR-based sensitive detection of the edible fungus Boletus edulis from rDNA ITS sequences. Electron J Biotechnol 11(3):1–8

    Google Scholar 

  • Boa E (ed) (2004) Wild edible fungi. A global overview of their use and importance to people. Non wood forest products no.17. FAO, Rome, p. 147

  • Bonet JA, Fischer CR, Colinas C (2004) The realtionship between forest age and aspect on the production of sporocarps of ectomycorrhizal fungi in Pinus sylvestris forests of the central Pyrenees. Forest Ecol Manage 203:157–175

    Article  Google Scholar 

  • Bonet JA, Oliach D, Fischer C, Olivera A, Martínez de Aragon J, Colinas C (2009) Cultivation methods of the black truffle, the most profitable mediterranean non-wood forest product; a state of the art review. Modelling, valuing and managing Mediterranean forest ecosystems for non-timber goods and services 57: 57–71

  • Bonet JA, Palahí M, Colinas C, Pukkala T, Fischer CR, Milna J, Martínez de Aragón J (2010) Modelling the production and species richness of wild mushrooms in pine forests of the Central Pyrenees in northeastern Spain. Can J For Res 40:347–356

    Article  Google Scholar 

  • Cannon PF, Kirk PM (2007) Fungal families of the world. CABI UK Centre (Egham): Surrey, UK. p. 456

  • Cassidy JR, Moore D, Lu C, Pukkila PJ (1984) Unusual organization and lack of recombination in the ribosomal RNA genes of Coprinus cinereus. Current Genetics 8:607–613

    Article  CAS  Google Scholar 

  • Debaud JC, Marmeisse R, Gay G (1999) Intraspecific genetic variation and populations of ectomycorrhizal fungi. In: Varma A, Hock B (eds) Mycorrhiza, 2nd edn. Springer, Berlin, pp 75–110

    Google Scholar 

  • Dickie IA, Xu B, Koide RT (2002) Vertical distribution of ectomycorrhizal hyphae in soil as shown by T-RFLP analysis. New Phytol 156:527–535

    Article  CAS  Google Scholar 

  • Dinnen SM, Aranda R, Anders DL, Robertson JM (2010) An evaluation of commercial DNA extraction kit for the isolation of bacterial spore DNA from soil. J Appl Microbiol 109:1886–1896

    Article  Google Scholar 

  • Egli S, Ayer F, Peter M, Eilmann B, Rigling A (2010) Is forest mushroom productivity driven by tree growth? Results from a thinning experiment. Ann For Sci 67:509–517

    Article  Google Scholar 

  • Feinstein LM, Sul WJ, Blackwood CB (2009) Assessment of bias associated with incomplete extraction of microbial DNA from soil. Appl Environ Microbiol 75:5428–5433

    Article  PubMed  CAS  Google Scholar 

  • Gachon C, Saindrenan P (2004) Real-time PCR monitoring of fungal development in Arabidopsis thaliana infected by Alternaria brassicicola and Botritys cinerea. Plant Physio Biochem 42:367–371

    Article  CAS  Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes, application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    Article  PubMed  CAS  Google Scholar 

  • Gardes M, Bruns TD (1996) Community structure of ectomycorrhizal fungi in a Pinus muricata forest: above- and below ground views. Can J Bot 74:1572–1583

    Article  Google Scholar 

  • Guerin- Laguette A, Plassard C, Mousain D (2000) Effects of experimental conditions on mycorrhizal relationships between Pinus sylvestris and Lactarius deliciosus and unprecedented fruit-body formation of the Saffron milk cap under controlled soilless conditions. Can J Microbiol 46:790–799

    PubMed  CAS  Google Scholar 

  • Guidot A, Debaud JC, Marmeisse R (2002) Spatial distribution of the below-ground mycelia of an ectomycorrhizal fungus inferred from specific quantification of its DNA in soil samples. FEMS Microbiol Ecol 42:477–486

    Article  PubMed  CAS  Google Scholar 

  • Guidot A, Debaud JC, Effosse A, Marmeisse R (2003) Below-ground distribution and persistence of an ectomycorrhizal fungus. New Phytol 161:539–547

    Article  Google Scholar 

  • Hietala AM, Eikenes M, Kvaalen H, Solheim H, Fossdal CG (2003) Multiplex real-time PCR for monitoring Heterobasidion annosum colonization in Norway spruce clones that differ in disease resistance. Appl Environ Microbiol 69:4413–4420

    Article  PubMed  CAS  Google Scholar 

  • Högberg MN, Högberg P (2002) Extramatrical ectomycorrhizal mycelium contributes one-third of microbial biomass and produces, together with associated roots, half the dissolved organic carbon in a forest soil. New Phytol 154:791–795

    Article  Google Scholar 

  • Hortal S, Pera J, Parladé J (2008) Tracking mycorrhizas and extraradical mycelium of the edible fungus Lactarius deliciosus under field competition with Rhizopogon spp. Mycorrhiza 18:69–77

    Article  PubMed  Google Scholar 

  • Hynes MM, Smith ME, Zasoski RJ, Bledsoe CS (2010) A molecular survey of ectomycorrhizal hyphae in a California QuercusPinus woodland. Mycorrhiza 20:265–274

    Article  PubMed  CAS  Google Scholar 

  • Kang S, Mills A (2006) The effect of sample size in studies of soil microbial community structure. J Microbiol Methods 66:242–250

    Article  PubMed  Google Scholar 

  • Kennedy PG, Bergemann SE, Hortal S, Bruns TD (2007) Determining the outcome of field-based competition between two Rhizopogon species using real-time PCR. Mol Ecol 16:881–890

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi J, Futai K (2003) Spatial distribution of sporocarps and the biomass of ectomycorrhizas of Suillus pictus in a Korean pine (Pinus koraiensis) stand. J For Res 8:17–25

    Article  Google Scholar 

  • Kjøller R (2006) Disproportionate abundance between ectomycorrhizal root tips and their associated mycelia. FEMS Microbiol Ecol 58:214–224

    Article  PubMed  Google Scholar 

  • Laganà A, Angiolini C, Salerni E, Perini C, Barluzzi C, de Dominicis V (2002) Periodicity, fluctuations and successions of macrofungi in forests (Abies alba Miller) in Tuscany, Italy. For Ecol Manage 169:187–202

    Article  Google Scholar 

  • Landeweert R, Veenman C, Kuyper TW, Fritze H, Wernars K, Smith E (2003) Quantification of ectomycorrhizal mycelium in soil by real-time PCR compared to conventional quantification techniques. FEMS Microbiol Ecol 45:283–292

    Article  PubMed  CAS  Google Scholar 

  • Landeweert R, Leeflang P, Smit E, Kuyper T (2005) Diversity of an ectomycorrhizal fungal community studied by a root tip and total soil DNA approach. Mycorrhiza 15:1–6

    Article  PubMed  Google Scholar 

  • Lian C, Narimatsu M, Nara K, Hogetsu T (2006) Tricholoma matsutake in a natural Pinus densiflora forest: correspondence between above- and below-ground genets, association with multiple host trees and alterations of existing ectomycorrhizal communities. New Phytol 171:825–836

    Article  PubMed  Google Scholar 

  • Lilleskov EA, Bruns TD (2003) Root colonization dynamics of two ectomycorrhizal fungi of contrasting life history strategies are mediated by addition of organic nutrient patches. New Phytol 159:141–151

    Article  Google Scholar 

  • Lindahl BD, de Boer W, Finlay RD (2010) Disruption of root carbon transport into forest humus stimulates fungal opportunists at the expense of mycorrhizal fungi. The ISME Journal 4:872–881

    Article  PubMed  Google Scholar 

  • Martin KJ, Rygiewicz PT (2005) Fungal-specific PCR primers developed for analysis of the ITS region of environmental DNA extracts. BMC Microbiol 5:28, Available from: http://www.biomedcentral.com/1471-2180/5/28

    Article  PubMed  Google Scholar 

  • Martínez de Aragón J, Bonet JA, Fischer CR, Colinas C (2007) Productivity of ectomycorrhizal and selected edible saprotrophic fungi in pine forests of the pre-Pyrenees mountains, Spain: predictive equations for forest management of mycological resources. For Ecol Manage 252:239–256

    Article  Google Scholar 

  • Martínez-Peña F (2009) Producción de carpóforos macromicetes epigeos en masas ordenadas de Pinus sylvestris L. Dissertation, ETSI Montes. Universidad Politécnica de Madrid

  • Mello A, Ghignone S, Vizzini A, Sechi C, Ruiu P, Bonfante P (2006) ITS primers for the identification of marketable boletes. J Biotechnol 121:318–329

    Article  PubMed  CAS  Google Scholar 

  • Moor D, Brodmann P, Nicholas G, Eugster A (2002) Polymerase chain reaction (PCR) for the detection of king bolete (Boletus edulis) and slippery jack (Suillus luteus) in food samples. Eur Food Res Technol 214:340–345

    Article  CAS  Google Scholar 

  • Oort AJP (1981) Nutritional requirements of Lactarius species and cultural characters in relation to taxonomy. Serie Ver Km Ned Akad Wet Natuur 76:1–95

    Google Scholar 

  • Ortega-Martínez P, Martínez-Peña F (2008) A sampling method for estimating sporocarps production of wild edible mushrooms of social and economic interest. Investig Agrar Sist Recur For 17:228–237

    Google Scholar 

  • Ortega-Martínez P, Águeda B, Fernández-Toirán LM, Martínez-Peña F (2010) Tree age influences on the development of edible ectomycorrhizal fungi sporocarps in Pinus sylvestris stands. Mycorrhiza 21:65–70

    Article  PubMed  Google Scholar 

  • Parladé J, Pera J, Luque J (2004) Evaluation of mycelial inocula of edible Lactarius species for the production of Pinus pinaster and P. sylvestris mycorrhizal seedlings under greenhouse conditions. Mycorrhiza 14:171–176

    Article  PubMed  Google Scholar 

  • Parladé J, Hortal S, Pera J, Galipienso L (2007) Quantitative detection of Lactarius deliciosus extraradical soil mycelium by real-time PCR and its application in the study of fungal persistence and interspecific competition. J Biotechnol 128:14–23

    Article  PubMed  Google Scholar 

  • Peintner U, Iotti M, Klotz P, Bonuso E, Zambonelli A (2007) Soil fungal communities in a Castanea sativa (chestnut) forest producing large quantities of Boletus edulis sensu lato (porcini): where is the mycelium of porcini? Environ Microbiol 9:880–889

    Article  PubMed  CAS  Google Scholar 

  • Peter M, Ayer F, Egli S, Honegger R (2001) Above- and below-ground community structure of ectomycorrhizal fungi in three Norway spruce (Picea abies) stands in Switzerland. Can J Bot 79:1134–1151

    Article  Google Scholar 

  • Pickles BJ, Genney DR, Potts JM, Lennon JL, Anderson IC, Alexander IJ (2009) Spatial and temporal ecology of Scots pine ectomycorrhizas. New Phytol 186:755–768

    Article  Google Scholar 

  • Pinna S, Gévry MF, Côté M, Sirois L (2010) Factors influencing fructification phenology of edible mushrooms in a boreal mixed forest of Eastern Canada. For Ecol Manage 260:294–301

    Article  Google Scholar 

  • Raidl S, Bonfigli R, Agerer R (2005) Calibration of quantitative real-time Taqman PCR by correlation with hyphal biomass anf ITS copies in mycelia of Piloderma croceum. Plant Biol 7:713–717

    Article  PubMed  CAS  Google Scholar 

  • Ranjard L, Lejon DP, Mougel C, Schehrer L, Merdinoglu D, Chaussod R (2003) Sampling strategy in molecular microbial ecology: influence of soil sample size on DNMA fingerprinting analysis of fungal and bacterial communities. Environ Microbiol 5:1111–1120

    Article  PubMed  CAS  Google Scholar 

  • Read DJ (1992) The mycorrhizal mycelium. In: Allen MF (ed) Mycorrhizal functioning. Chapman and Hall, London, pp 102–133

    Google Scholar 

  • Rineau F, Maurice JP, Nys C, Voiry H, Garbaye J (2010) Forest liming durably impact the communities of ectomycorrhizas and fungal epigeous fruiting bodies. Ann For Sci 66:110–121

    Article  Google Scholar 

  • Salerni E, Laganà A, Perini C, Loppi S, de Dominicis V (2002) Effects of temperature and rainfall on fruiting of macrofungi in oak forests of the Mediterranean area. Isr J Plant Sci 50:189–198

    Article  Google Scholar 

  • Schubert R, Raidl S, Funk R, Bahnweg G, Müller-Starck G, Agerer R (2003) Quantitative detection of agar-cultivated and rhizotron-grown Piloderma croceum Erikss. & Hjortst by ITS1-based fluorescent PCR. Mycorrhiza 13:159–165

    Article  PubMed  CAS  Google Scholar 

  • Simard SW, Jones MD, Durall DM (2002) Carbon and nutrient fluxes within and between mycorrhizal plants. In: Sanders IR, van der Heijden M (eds) Mycorrhizal ecology. Springer, Berlin, pp 33–74

    Google Scholar 

  • Suz LM, Martín MP, Oliach D, Fischer CR, Colinas C (2008) Mycelial abundance and other factors related to truffle productivity in Tuber melanosporumQuercus ilex orchards. FEMS Microbiol Lett 285:72–78

    Article  PubMed  CAS  Google Scholar 

  • Taylor AFS (2002) Fungal diversity in ectomycorrhizal communities: sampling effort and species detection. Plant Soil 244:19–28

    Article  CAS  Google Scholar 

  • van der Linde S, Alexander IJ, Anderson IC (2009) Spatial distribution of sporocarps of stipitate hydnoid fungi and their belowground mycelium. FEMS Microbiol Ecol 69:344–352

    Article  PubMed  Google Scholar 

  • Wallander H, Nilsson LO, Hagerberg D, Baath E (2001) Estimation of the biomass and seasonal growth of external mycelium of ectomycorrhizal fungi in the field. New Phytol 151:753–760

    Article  CAS  Google Scholar 

  • Wang B, Hall IR (2004) Edible ectomycorrhizal mushrooms: challenges and achievements. Can J Bot 82:1063–1073

    Article  Google Scholar 

  • Zhou ZH, Miwa M, Matsuda Y, Hogetsu T (2001) Spatial distribution of the subterranean mycelia and ectomycorrhizae of Suillus grevillei genets. J Plant Res 114:179–185

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the financial support provided by the Instituto Nacional de Investigaciones Agroalimentarias (INIA, Spain), project RTA2006-00095-CO2, and the European Regional Development Found. The work is part of the doctorate of H. De la Varga, financed by the INIA (Spain). Technical collaboration of Dr. Amaya Amador and Dr. Ramon Seminago, from the Unitat de Genòmica, Serveis Cientificotècnics, Universitat de Barcelona is appreciated. We acknowledge the invaluable help of the staff of Centro de Investigación Forestal de Valonsadero involved in the maintenance of the experimental plots in Pinar Grande.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joan Pera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De la Varga, H., Águeda, B., Martínez-Peña, F. et al. Quantification of extraradical soil mycelium and ectomycorrhizas of Boletus edulis in a Scots pine forest with variable sporocarp productivity. Mycorrhiza 22, 59–68 (2012). https://doi.org/10.1007/s00572-011-0382-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-011-0382-2

Keywords

Navigation