Skip to main content
Log in

Media formulation influences in vitro ectomycorrhizal synthesis on the European aspen Populus tremula L.

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

The effect of various media formulations on in vitro ectomycorrhizal synthesis of identified fungal strains with European aspen (Populus tremula L.) was tested in Petri dishes. Pre-grown seedlings were transferred to various nutrient media and inoculated with Paxillus involutus isolates using modified sandwich techniques. Mycorrhiza formation was evaluated macroscopically and further confirmed by microscopic examination of semi-thin sections for anatomical features of the mantle and the Hartig net. Standard media formulations did not support successful ectomycorrhiza formation because of either very poor plant survival (below 20%) or impaired fungal growth. The inclusion of micronutrients and vitamins in a Melin Norkrans (MMN)-based medium increased plant survival rate to above 60% and supported successful mycorrhizal synthesis. P. involutus isolates formed mycorrhizas with a characteristic Hartig net restricted to the epidermis. Mantle density and thickness varied depending on the isolate. In a follow-up experiment, the adapted medium supported successful ectomycorrhiza formation by various Laccaria and Hebeloma isolates. Our results show that an exogenous supply of vitamins and micronutrients in the medium was a prerequisite for successful mycorrhization of P. tremula in vitro in Petri dishes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agerer R (1990) Color atlas of ectomycorrhizae. Einhorn Verlag, Munich

    Google Scholar 

  • Bärtels A (1989) Gehölzvermehrung. Ulmer Verlag, Stuttgart

    Google Scholar 

  • Baum C, Makeschin F (2000) Effects of nitrogen and phosphorus fertilization on mycorrhizal formation of two poplar clones (Populus trichocarpa and P. tremula x tremuloides). J Plant Nutr Soil Sci 163:491–497, doi:10.1002/1522-2624(200010)163:5<491::AID-JPLN491>3.0.CO;2-3

    Article  CAS  Google Scholar 

  • Baum C, Stetter U, Makeschin F (2002) Growth response of Populus trichocarpa to inoculation by the ectomycorrhizal fungus Laccaria laccata in a pot and field experiment. For Ecol Manag 163:1–8, doi:10.1016/S0378-1127(01)00534-5

    Article  Google Scholar 

  • Baum C, Hrynkiewicz K, Leinweber P, Meißner R (2006) Heavy-metal mobilization and uptake by mycorrhizal and nonmycorrhizal willows (Salix x dasyclados). J Plant Nutr Soil Sci 169:516–522, doi:10.1002/jpln.200521925

    Article  CAS  Google Scholar 

  • Blaudez D, Chalot M, Dizengremel P, Botton B (1998) Structure and function of the ectomycorrhizal association between Paxillus involutus and Betula pendula. II. Metabolic changes during mycorrhizal formation. New Phytol 138:543–552, doi:10.1046/j.1469-8137.1998.00125.x

    Article  CAS  Google Scholar 

  • Borset O (1954) Ospfroets spireevne. Medd Nor Skogforsoksves 44:1–44, The germination power of aspen seed

    Google Scholar 

  • Brun A, Chalot M, Finlay RD, Söderström B (1995) Structure and function of the ectomycorrhizal association between Paxillus involutus (Batsch) Fr. and Betula pendula Roth. New Phytol 129:487–493, doi:10.1111/j.1469-8137.1995.tb04319.x

    Article  Google Scholar 

  • Brundrett M, Bougher N, Dell B, Grove T, Malajczuk N (1996) Working with Mycorrhizas in Forestry and Agriculture. ACIAR Monograph, Canberra, Australia

    Google Scholar 

  • Bücking H, Heyser W (2001) Microautoradiographic localization of phosphate and carbohydrates in mycorrhizal roots of Populus tremula × Populus alba and the implications for transfer processes in ectomycorrhizal associations. Tree Physiol 21:101–107

    PubMed  Google Scholar 

  • Burgess T, Dell B, Malajczuk N (1996) In vitro synthesis of Pisolithus-Eucalypthus ectomycorrhizae: synchronization of lateral tip emergence and ectomycorrhizal development. Mycorrhiza 6:189–196, doi:10.1007/s005720050125

    Article  Google Scholar 

  • Cairney JWG (1999) Intraspecific physiological variation: implications for understanding functional diversity in ectomycorrhizal fungi. Mycorrhiza 9:125–135, doi:10.1007/s005720050297

    Article  Google Scholar 

  • Couturier J, Montanini B, Martin F, Brun A, Blaudez D et al (2007) The expanded family of ammonium transporters in the perennial poplar plant. New Phytol 174:137–150, doi:10.1111/j.1469-8137.2007.01992.x

    Article  PubMed  CAS  Google Scholar 

  • Cripps CL, Miller OK (1995) Ectomycorrhizae formed in vitro by quaking aspen: including Inocybe lacera and Amanita pantherina. Mycorrhiza 5:357–370, doi:10.1007/BF00207408

    Article  Google Scholar 

  • Dickmann DI (2006) Silviculture and biology of short rotation woody crops in temperate regions: then and now. Biomass Bioenergy 30:696–705, doi:10.1016/j.biombioe.2005.02.008

    Article  Google Scholar 

  • DosSantos-Utmazian MN, Wenzel WW (2007) Cadmium and zinc accumulation in willow and poplar species grown on polluted soils. J Nutr Soil Sci 170:265–272, doi:10.1002/jpln.200622073

    Article  CAS  Google Scholar 

  • DosSantos-Utmazian MN, Schweiger P, Sommer P, Gorfer M, Strauss J et al (2007) Influence of Cadophora finlandica and other microbial treatments on cadmium and zinc uptake in willows on pollutes sites. Plant Soil Environ 53(4):158–166

    CAS  Google Scholar 

  • Duddridge JA (1986) The development and ultrastructure of ectomycorrhizas IV. Compatible and incompatible interactions between Suillus grevillei (Klotzsch) sing. and a number of ectomycorrhizal hosts in vitro in the presence of exogenous carbohydrate. New Phytol 103:465–471, doi:10.1111/j.1469-8137.1986.tb02884.x

    Article  CAS  Google Scholar 

  • Duddridge JA, Read DJ (1984) The development and ultrastructure of ectomycorrhizas II. Ectomycorrhizal development on pine in vitro. New Phytol 96:575–582, doi:10.1111/j.1469-8137.1984.tb03592.x

    Article  Google Scholar 

  • Fechner GH, Burr KE, Myers JF (1981) Effects of storage, temperature, and moisture stress on seed germination and early seedling development of trembling aspen. Can J For Res 11:718–722, doi:10.1139/x81-100

    Article  Google Scholar 

  • Fedorkov A (1999) Influence of air pollution on seed quality of Picea obovata. Eur J For Pathol 29:371–375, doi:10.1046/j.1439-0329.1999.00166.x

    Article  Google Scholar 

  • Finlay RD, Frostegard A, Sonnerfeldt A-M (1992) Utilization of organic and inorganic nitrogen sources by ectomycorrhizal fungi in pure culture and symbiosis with Pinus contorta Dougl. ex Loud. New Phytol 120:105–115, doi:10.1111/j.1469-8137.1992.tb01063.x

    Article  Google Scholar 

  • Fortin JA, Piché Y, Godbout C (1983) Methods for synthesizing ectomycorrhizas and their effect on mycorrhizal development. Plant Soil 71:275–284, doi:10.1007/BF02182663

    Article  Google Scholar 

  • Gafur A, Schützendübel A, Langenfeld-Heyser R, Fritz E, Polle A (2004) Compatible and incompetent Paxillus involutus isolates for ectomycorrhiza formation in vitro with poplar (Populus × canescens) differ in H2O2 production. Plant Biol 6:91–99, doi:10.1055/s-2003-44718

    Article  PubMed  CAS  Google Scholar 

  • George EF (1993) Plant propagation by tissue culture. Butler & Tanner, Frome, Sommerset

    Google Scholar 

  • Gibson F, Deacon JW (1990) Establishment of ectomycorrhizas in aseptic culture: effects of glucose, nitrogen and phosphorus in relation to succession. Mycol Res 94(2):166–172

    Article  Google Scholar 

  • Godbout C, Fortin FA (1985) Synthesized ectomycorrhizae of aspen: fungal genus level of structural characterization. Can J Bot 63:252–262

    Article  Google Scholar 

  • Hampp R, Ecke M, Schaeffer C, Wallenda T, Wingler A et al (1996) Axenic mycorrhization of wild type and transgenic hybrid aspen expressing T-DNA indoleacetic acid-biosynthetic genes. Trees (Berl) 11:59–64, doi:10.1007/s004680050059

    Article  Google Scholar 

  • Heslin MC, Douglas GC (1986) Synthesis of poplar mycorrhizas. Trans Br Mycol Soc 86(1):117–122

    Article  Google Scholar 

  • Hutchison LJ, Piche Y (1995) Effects of exogenous glucose on mycorrhizal colonization in vitro by early-stage and late-stage ectomycorrhizal fungi. Can J Bot 73:898–904, doi:10.1139/b95-337

    Article  CAS  Google Scholar 

  • Krpata D, Peintner U, Langer I, Fitz W, Schweiger P (2008) Ectomycorrhizal communities associated with Populus tremula growing in a heavy metal contaminated site. Mycol Res, doi:10.1016/j.mycres.2008.02.004

  • Landhäusser SM, Mushin TM, Zwiazek JJ (2002) The effect of ectomycorrhizae on water relations in aspen (Populus tremuloides) and white spruce (Picea clauca) at low soil temperatures. Can J Bot 80:684–689

    Article  Google Scholar 

  • Langenfeld-Heyser R, Gao J, Ducic T, Tachd P, Lu CF et al (2007) Paxillus involutus mycorrhiza attenuate NaCl-stress responses in the salt-sensitive hybrid poplar Populus × canescens. Mycorrhiza 17:121–131, doi:10.1007/s00572-006-0084-3

    Article  PubMed  CAS  Google Scholar 

  • Latva-Karjanmaa T, Suvanto L, Leinonen K, Hannu R (2003) Emergence and survival of Populus tremula seedlings under varying moisture conditions. Can J For Res 33:2081–2088, doi:10.1139/x03-129

    Article  Google Scholar 

  • Lemus R, Lal-Referee R (2005) Bioenergy crops and carbon sequestration. Crit Rev Plant Sci 24(1):1–21, doi:10.1080/07352680590910393

    Article  CAS  Google Scholar 

  • Leyval C, Turnau K, Haselwandter K (1997) Effect of heavy metal pollution on mycorrhizal colonization and function: physiology, ecological and applied aspects. Mycorrhiza 7:139–153, doi:10.1007/s005720050174

    Article  CAS  Google Scholar 

  • Loewe A, Einig W, Shi L, Dizengremel P, Hampp R (2000) Mycorrhizal formation and elevated CO2 both increase the capacity for sucrose synthesis in source leaves of spruce and aspen. New Phytol 145:565–574, doi:10.1046/j.1469-8137.2000.00598.x

    Article  CAS  Google Scholar 

  • Malajczuk N, Lapeyrie F, Garbaye J (1990) Infectivity of pine and eucalypt isolates of Pisolithus tinctorius on roots of Eucalyptus urophylla in vitro. New Phytol 114:627–631, doi:10.1111/j.1469-8137.1990.tb00433.x

    Article  Google Scholar 

  • Marmeisse R, Gryta H, Jargeat P, Fraissinet-Tachet L, Gay G et al (1999) Hebeloma. In: Cairney JWG, Chambers SM (eds) Ectomycorrhizal fungi—Key genera in profile. Springer, Berlin Heidelberg New York, pp 89–127

    Google Scholar 

  • Melin E (1923) Experimentelle untersuchungen über die birken-und espenmykorrhizen und ihre pilzsymbionten. Sven Bot Tidskr 17(4):479–520

    Google Scholar 

  • Molina R, Palmer JG (1982) Isolation, maintenance and pure culture manipulation of ectomycorrhizal fungi. In: Schenk NC (ed) Methods and principles of mycorrhizal research. American Phytopathological Society, St Paul, pp 115–129

    Google Scholar 

  • Niemi K, Julkunen-Tiitto R, Haggman H, Sarjala T (2007) Suillus variegatus causes significant changes in the content of individual polyamines and flavonoids in Scots pine seedlings during mycorrhiza formation in vitro. J Exp Bot 58(3):391–401, doi:10.1093/jxb/erl209

    Article  PubMed  CAS  Google Scholar 

  • Parladé J, Pera J, Luque J (2004) Evaluation of mycelial inocula of edible Lactarius species for the production of Pinus pinaster and P. sylvestris mycorrhizal seedlings under greenhouse conditions. Mycorrhiza 14:171–176, doi:10.1007/s00572-003-0252-7

    Article  PubMed  Google Scholar 

  • Perrin E, Parlade X, Pera J (1996) Respectiveness of forest soils to ectomycorrhizal association: I. Concept and method as applied to the symbiosis between Laccaria bicolor (Maire) Orton and Pinus pinaster Art or Pseudotsuga menziesii (Mirb.) Franco. Mycorrhiza 6:469–476, doi:10.1007/s005720050149

    Article  Google Scholar 

  • Peterson RL, Chakravarty P (1991) Techniques in synthesizing ectomycorrhiza. In: Norris J, Read D, Varma A (eds) Methods in microbiology. Academic, U.S., pp 75–107

    Google Scholar 

  • Robinson BH, Mills TM, Petit D, Fung LE, Green SR et al (2000) Natural and induced cadmium-accumulation in poplar and willow: implications for phytoremediation. Plant Soil 227:301–306, doi:10.1023/A:1026515007319

    Article  CAS  Google Scholar 

  • Sell J, Kayser A, Schulin R, Brunner I (2005) Contribution of ectomycorrhizal fungi to cadmium uptake of poplars and willows from a heavily polluted soil. Plant Soil 277:245–253, doi:10.1007/s11104-005-7084-5

    Article  CAS  Google Scholar 

  • Selle A, Willmann M, Grunze N, Geßler A, Weiß M et al (2005) The high-affinity poplar ammonium importer PttAMT1.2 and its role in ectomycorrhizal symbiosis. New Phytol 168:697–706, doi:10.1111/j.1469-8137.2005.01535.x

    Article  PubMed  CAS  Google Scholar 

  • Tagu D, Rampant PF, Lapeyrie F, Frey-Klett P, Vion P et al (2001) Variation in the ability to form ectomycorrhizas in the F1 progeny of an interspecific poplar (Populus spp.) cross. Mycorrhiza 10:237–240, doi:10.1007/PL00009997

    Article  CAS  Google Scholar 

  • Unterbrunner R, Puschenreiter M, Sommer P, Wieshammer G, Tlustos P et al (2007) Heavy metal accumulation in trees growing on contaminated sites in Central Europe. Environ Pollut 148:107–114, doi:10.1016/j.envpol.2006.10.035

    Article  PubMed  CAS  Google Scholar 

  • Wallander H, Söderström B (1999) Paxillus. In: Cairney JWG, Chambers SM (eds) Ectomycorrhizal fungi—Key genera in profile. Springer, Berlin Heidelberg New York, pp 231–252

    Google Scholar 

  • Wong KKY, Fortin A (1988) A Petri dish technique for the aseptic synthesis of ectomycorrhizae. Can J Bot 67:1713–1716

    Google Scholar 

  • Worrell R (1995) European aspen (Populus tremula L.): a review with particular reference to Scotland. I. Distribution, ecology and genetic variation. Forestry 68(2):96–105, doi:10.1093/forestry/68.2.93

    Article  Google Scholar 

Download references

Acknowledgments

We thank Ivano Brunner (WSL, Birmensdorf, Switzerland) for kindly providing the Swiss Paxillus involutus isolates WSL 37.7 and WSL 37.10 and Waltraud Klepal (Service Unit Cell Imaging and Ultrastructure Research; University of Vienna) for her most helpful support with sample preparation. Moreover, we thank Johann Glauninger (Institute of Plant Protection; BOKU) for kindly providing access to microscopic infrastructure and Siegrid Steinkellner (Institute of Plant Protection; BOKU) for her useful comments on the manuscript. The present study is part of the Project P170120-B04, which is financed by the Austrian Science Fund FWF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingrid Langer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Langer, I., Krpata, D., Peintner, U. et al. Media formulation influences in vitro ectomycorrhizal synthesis on the European aspen Populus tremula L.. Mycorrhiza 18, 297–307 (2008). https://doi.org/10.1007/s00572-008-0182-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-008-0182-5

Keywords

Navigation