Skip to main content

Advertisement

Log in

Effects of changing PZT length on the performance of doubly-clamped piezoelectric energy harvester with different beam shapes under stochastic excitation

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

The concept of vibratory energy harvesting has flourished in recent years as a possible alternative to provide a continuous power supply. Most work focusing on changing the configuration of piezoelectric energy harvester has concentrated on cantilevered beams at resonance using harmonic excitation. This work is mainly devoted to obtain the effects of changing PZT length on output characteristics for doubly-clamped piezoelectric energy harvester with different beam shapes under stochastic excitation. Firstly, analytical expressions of output characteristics of random excited doubly-clamped piezoelectric energy harvester are derived. Subsequently, the trends between factors that affect output characteristics and the change of beam shape or PZT length are calculated and analyzed. Finally, effects of changing PZT length on output characteristics varying with load resistance and acceleration’s spectral density for doubly-clamped piezoelectric energy harvester with different beam shapes are compared and discussed. Monte Carlo simulation and experimental results exhibit qualitative agreement with Fokker–Planck theory, showing that changing PZT length could improve output characteristics of random excited doubly-clamped piezoelectric energy harvester considerably. Besides, it also demonstrates that doubly-clamped trapezoidal piezoelectric energy harvesters under random excitation are superior to their rectangular counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Adhikari S, Friswell MI, Inman DJ (2009) Piezoelectric energy harvesting from broadband random vibrations. Smart Mater Struct 18(11):115005

    Article  Google Scholar 

  • Anton SR, Sodano HA (2007) A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater Struct 16(3):R1

    Article  Google Scholar 

  • Beeby SP, Tudor MJ, White NM (2006) Energy harvesting vibration sources for microsystems applications. Meas Sci Technol 17(12):R175

    Article  Google Scholar 

  • Bourisli RI, Al-Ajmi MA (2010) Optimization of smart beams for maximum modal electromechanical coupling using genetic algorithms. J Intell Mater Syst Struct 21(9):907–914

    Article  Google Scholar 

  • Bryant RG, Effinger Iv RT, Aranda I Jr et al (2004) Radial field piezoelectric diaphragms. J Intell Mater Syst Struct 15(7):527–538

    Article  Google Scholar 

  • Cammarano A, Burrow SG, Barton DAW et al (2010) Tuning a resonant energy harvester using a generalized electrical load. Smart Mater Struct 19(5):055003

    Article  Google Scholar 

  • Chandrasekharan N, Ju J, Thompson L (2013) Effects of geometric and material properties on electrical power harvested from a bimorph piezoelectric cantilever beam. Multidiscip Model Mater Struct 9(3):391–409

    Article  Google Scholar 

  • Dietl JM, Garcia E (2010) Beam shape optimization for power harvesting. J Intell Mater Syst Struct 21(6):633–646

    Article  Google Scholar 

  • Goldschmidtboeing F, Woias P (2008) Characterization of different beam shapes for piezoelectric energy harvesting. J Micromech Microeng 18(10):104013

    Article  Google Scholar 

  • Hosseini R, Hamedi M (2015) Improvements in energy harvesting capabilities by using different shapes of piezoelectric bimorphs. J Micromech Microeng 25(12):125008

    Article  Google Scholar 

  • Jackson N, O’Keeffe R, Waldron F et al (2013) Influence of aluminum nitride crystal orientation on MEMS energy harvesting device performance. J Micromech Microeng 23(7):075014

    Article  Google Scholar 

  • Jin L, Gao S, Zhou X et al (2017) The effect of different shapes of cantilever beam in piezoelectric energy harvesters on their electrical output. Microsyst Technol 23(10):4805–4814

    Article  Google Scholar 

  • Kulah H, Najafi K (2008) Energy scavenging from low-frequency vibrations by using frequency up-conversion for wireless sensor applications. IEEE Sens J 8(3):261–268

    Article  Google Scholar 

  • Li H, Tian C, Deng ZD (2014) Energy harvesting from low frequency applications using piezoelectric materials. Appl Phy Rev 1(4):041301

    Article  Google Scholar 

  • Li P, Gao S, Cai H (2015) Modeling and analysis of hybrid piezoelectric and electromagnetic energy harvesting from random vibrations. Microsyst Technol 21(2):401–414

    Article  Google Scholar 

  • Liang Z, Xu C, Ren B et al (2014) A low frequency and broadband piezoelectric energy harvester using asymmetrically serials connected double clamped–clamped beams. Jpn J Appl Phys 53(8):087101

    Article  Google Scholar 

  • Lien IC, Shu YC (2012) Array of piezoelectric energy harvesting by the equivalent impedance approach. Smart Mater Struct 21(8):082001

    Article  Google Scholar 

  • Mahmoudi S, Kacem N, Bouhaddi N (2014) Enhancement of the performance of a hybrid nonlinear vibration energy harvester based on piezoelectric and electromagnetic transductions. Smart Mater Struct 23(7):075024

    Article  Google Scholar 

  • Manla G, White NM, Tudor J (2009) Harvesting energy from vehicle wheels//Solid-State Sensors, Actuators and Microsystems Conference. Trans. Int. IEEE. 2009:1389–1392

    Google Scholar 

  • Muralt P, Polcawich RG, Trolier-McKinstry S (2009) Piezoelectric thin films for sensors, actuators, and energy harvesting. MRS Bull 34(9):658–664

    Article  Google Scholar 

  • Muthalif AGA, Nordin NHD (2015) Optimal piezoelectric beam shape for single and broadband vibration energy harvesting: modeling, simulation and experimental results. Mech Syst Signal Process 54:417–426

    Article  Google Scholar 

  • Ottman GK, Hofmann HF, Bhatt AC et al (2002) Adaptive piezoelectric energy harvesting circuit for wireless remote power supply. IEEE Trans Power Electron 17(5):669–676

    Article  Google Scholar 

  • Park KI, Lee M, Liu Y et al (2012) Flexible nanocomposite generator made of BaTiO3 nanoparticles and graphitic carbons. Adv Mater 24(22):2999–3004

    Article  Google Scholar 

  • Patel R (2013) Modelling analysis and optimisation of cantilever piezoelectric energy harvesters. University of Nottingham, Nottingham

    Google Scholar 

  • Patel R, McWilliam S, Popov AA (2014) Optimization of piezoelectric cantilever energy harvesters including non-linear effects. Smart Mater Struct 23(8):085002

    Article  Google Scholar 

  • Roundy S, Wright PK (2004) A piezoelectric vibration based generator for wireless electronics. Smart Mater Struct 13(5):1131

    Article  Google Scholar 

  • Roundy S, Wright PK, Pister KSJ (2002) Micro-electrostatic vibration-to-electricity converters. Fuel Cells (methanol). 220(22):1–10

    Google Scholar 

  • Shafer MW, Bryant M, Garcia E (2012) Designing maximum power output into piezoelectric energy harvesters. Smart Mater Struct 21(8):085008

    Article  Google Scholar 

  • Sunithamani S, Lakshmi P (2015) Simulation study on performance of MEMS piezoelectric energy harvester with optimized substrate to piezoelectric thickness ratio. Microsyst Technol 21(4):733–738

    Article  Google Scholar 

  • Sunithamani S, Lakshmi P, Flora EE (2014) PZT length optimization of MEMS piezoelectric energy harvester with a non-traditional cross section: simulation study. Microsyst Technol 20(12):2165–2171

    Article  Google Scholar 

  • Tabatabaei SMK, Behbahani S, Rajaeipour P (2016) Multi-objective shape design optimization of piezoelectric energy harvester using artificial immune system. Microsyst Technol 22(10):2435–2446

    Article  Google Scholar 

  • Yang B, Lee C, Xiang W et al (2009) Electromagnetic energy harvesting from vibrations of multiple frequencies. J Micromech Microeng 19(3):035001

    Article  Google Scholar 

  • Zhou X, Gao S, Liu H et al (2016) Effects of introducing nonlinear components for a random excited hybrid energy harvester. Smart Mater Struct 26(1):015008

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiqiao Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Gao, S., Jin, L. et al. Effects of changing PZT length on the performance of doubly-clamped piezoelectric energy harvester with different beam shapes under stochastic excitation. Microsyst Technol 24, 3799–3813 (2018). https://doi.org/10.1007/s00542-018-3845-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-018-3845-y

Navigation