Skip to main content

Advertisement

Log in

The effect of the beam shapes on the doubly-clamped piezoelectric energy harvester

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

For a piezoelectric energy harvester composed of a doubly-clamped beam with arbitrary width shapes and a proof mass, the influence of beam shapes and electrode arrangements on different electric outputs is analyzed. The output performances of piezoelectric energy harvesters with rectangular shape, concave trapezoidal shape, and concave parabolic shape are compared, and an optimization way is given. The experimental results validate the effectiveness of the methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. MOFID, H., EMMERMANN, A., ALM, M., and ZORNIG, C. An electromechanical finite element model for piezoelectric energy harvester plates. Journal of Sound and Vibration, 327, 9–25 (2009)

    Article  Google Scholar 

  2. HE, Q. B. and JIANG, T. X. Complementary multi-mode low-frequency vibration energy harvesting with chiral piezoelectric structure. Applied Physics Letters, 110(21), 213901 (2017)

    Article  Google Scholar 

  3. GAO, C., GAO, S., LIU, H., JIN, L., LU, J., and LI, P. Optimization for output power and band width in out-of-plane vibration energy harvesters employing electrets theoretically, numerically and experimentally. Microsystem Technologies, 16, 1–11 (2017)

    Google Scholar 

  4. WANG, H. R., HU, H. P., YANG, J. S., and HU, Y. T. Spiral piezoelectric transducer in torsional motion as low-frequency power harvester. Applied Mathematics and Mechanics (English Edition), 34(5), 589–596 (2013) https://doi.org/10.1007/s10483-013-1693-x

    Article  Google Scholar 

  5. GU, L. and LIVERMORE, C. Impact-driven, frequency up-converting coupled vibration energy harvesting device for low frequency operation. Smart Materials and Structures, 20, 045004 (2011)

    Article  Google Scholar 

  6. DECHANT, E., FEDULOV, F., CHASHIN, D. V., FETISOV, L. Y., FETISOV, Y. K., and SHAMONIN, M. Low-frequency, broadband vibration energy harvester using coupled oscillators and frequency up-conversion by mechanical stoppers. Smart Materials and Structures, 26, 065021 (2017)

    Article  Google Scholar 

  7. LIU, H., LEE, C., KOBAYASHI, T., TAY, C. J., and QUAN, C. Investigation of a mems piezoelectric energy harvester system with a frequency-widened-bandwidth mechanism introduced by mechanical stoppers. Smart Materials and Structures, 21, 035005 (2012)

    Article  Google Scholar 

  8. CHEN, J., YANG, J., GUO, H. Y., LI, Z. L., ZHENG, L., SU, Y. J., WEN, Z., FAN, X., and WANG, Z. L. Automatic mode transition enabled robust triboelectric nanogenerators. ACS Nano, 9, 12334 (2015)

    Article  Google Scholar 

  9. PILLATSCH, P., YEATMAN, E. M., and HOLMES, A. S. Magnetic plucking of piezoelectric beams for frequency up-converting energy harvesters. Smart Material and Structures, 23, 25009–25020 (2013)

    Article  Google Scholar 

  10. MATEU, L. and ECHETO, F. M. Optimum piezoelectric bending beam structures for energy harvesting using shoe inserts. Journal of Intelligent Material Systems and Structures, 16, 835–845 (2007)

    Article  Google Scholar 

  11. ROUNDY, S., LELAND, E. S., BAKER, J., CARLETON, E., REILLY, E., and LAI, E. Improving power output for vibration-based energy scavengers. IEEE Pervasive Computing, 4, 28–36 (2005)

    Article  Google Scholar 

  12. AYED, S. B., ABDELKEFI, A., NAJAR, F., and HAJJ, M. R. Design and performance of variable shaped piezoelectric energy harvesters. Journal of Intelligent Material Systems and Structures, 25, 174–186 (2014)

    Article  Google Scholar 

  13. BENASCIUTTI, D., MORO, L., ZELENIKA, S., and BRUSA, E. Vibration energy scavenging via piezoelectric bimorphs of optimized shapes. Microsystem Technologies, 16, 657–668 (2010)

    Article  Google Scholar 

  14. MUTHALIF, A. G. A. and NORDIN, N. H. D. Optimal piezoelectric beam shape for single and broadband vibration energy harvesting: modeling, simulation and experimental results. Mechanical Systems and Signal Processing, 54-55, 417–426 (2015)

    Article  Google Scholar 

  15. TABATABAEI, S. M. K., BEHBAHANI, S., and RAJAEIPOUR, P. Multi-objective shape design optimization of piezoelectric energy harvester using artificial immune system. Microsystem Technologies, 22, 2435–2446 (2016)

    Article  Google Scholar 

  16. ZHANG, G., GAO, S., LIU, H., and NIU, S. A low frequency piezoelectric energy harvester with trapezoidal cantilever beam: theory and experiment. Microsystem Technologies, 23, 3457–3466 (2017)

    Article  Google Scholar 

  17. ZHANG, G., GAO, S., and LIU, H. A utility piezoelectric energy harvester with low frequency and high-output voltage: theoretical model, experimental verification and energy storage. AIP Advances, 6, 137–156 (2016)

    Google Scholar 

  18. JIN, L., GAO, S., ZHOU, X., and ZHANG, G. The effect of different shapes of cantilever beam in piezoelectric energy harvesters on their electrical output. Microsystem Technologies, 23, 4805–4814 (2017)

    Article  Google Scholar 

  19. LI, P., GAO, S., NIU, S., LIU, H., and CAI, H. An analysis of the coupling effect for a hybrid piezoelectric and electromagnetic energy harvester. Smart Materials and Structures, 23, 065016 (2014)

    Article  Google Scholar 

  20. LI, P., GAO, S., CAI, H., and WANG, H. Coupling effect analysis for hybrid piezoelectric and electromagnetic energy harvesting from random vibrations. Microsystem Technologies, 15, 1915–1924 (2014)

    Google Scholar 

  21. ZHOU, X., GAO, S., LIU, H., and GUAN, Y. Effects of introducing nonlinear components for a random excited hybrid energy harvester. Smart Materials and Structures, 26, 015008 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiqiao Gao.

Additional information

Citation: JIN, L., GAO, S. Q., and ZHANG, X. Y. The effect of the beam shapes on the doubly-clamped piezoelectric energy harvester. Applied Mathematics and Mechanics (English Edition), 40(9), 1361–1374 (2019) https://doi.org/10.1007/s10483-019-2513-7

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, L., Gao, S. & Zhang, X. The effect of the beam shapes on the doubly-clamped piezoelectric energy harvester. Appl. Math. Mech.-Engl. Ed. 40, 1361–1374 (2019). https://doi.org/10.1007/s10483-019-2513-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-019-2513-7

Keywords

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation