Skip to main content

Advertisement

Log in

Modeling and analysis of hybrid piezoelectric and electromagnetic energy harvesting from random vibrations

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

We illustrate electroelastic modeling, analysis and simulation solutions, and experimental validation of hybrid piezoelectric (PE) and electromagnetic (EM) energy harvesting from broadband random vibration. For a more practically available ambient source, the more compact expressions of mean power and spectral density (SD) involving dimensionless parameters are derived when the harvester is subjected to random excitation. In the study, it is assumed that the base excitation is white noise. Then, the effect of acceleration SD, load resistance, coupling strength on harvester performances are analyzed by numerical calculation and simulation, and the results are validated by the experimental measurements. It is founded that, only if the load resistance of PE and EM element meet the impedance matching can the hybrid energy harvester output the maximal mean power and spectral density at the resonant frequency, which increases with PE load resistance increasing, but hardly affected by load resistance of EM element; the variation extent of mean power with SD of acceleration increasing varies with the load resistance, and it is up to the maximum under the condition of optimal load; moreover, the stronger the coupling strength is, the wider the frequency band becomes, and the greater the mean power and power spectral density are, while the increasing extent decreases with the coupling strength increasing. Besides, the coupling strength can affect the internal resistance of harvester. Furthermore, with coupling strength increasing, the decreasing degree of mean power falls when the load resistance is greater than the optimal load.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Adhikari S, Friswell MI, Inman DJ (2009) Piezoelectric energy harvesting from broadband random vibrations. Smart Mater Struct 18(11):115005

    Article  Google Scholar 

  • Blystad LCJ, Halvorsen E, Husa S (2010) Piezoelectric MEMS energy harvesting systems driven by harmonic and random vibrations. IEEE Trans Ultrason Ferroelectr Freq Control 57(4):908–919

    Article  Google Scholar 

  • Challa VR, Prasad MG, Fisher FT (2009) A coupled piezoelectric–electromagnetic energy harvesting technique for achieving increased power output through damping matching. Smart Mater Struct 18:1–11

    Article  Google Scholar 

  • Cheng S, Wang N, Arnold DP (2007) Modeling of magnetic vibrational energy harvesters using equivalent circuit representations. J Micromech Microeng 17:2328–2335

    Article  Google Scholar 

  • Cho J, Anderson M, Richards R (2005) Optimization of electromechanical coupling for a thin-film PZT membrane: I. Modeling. J Micromech Microeng 15:1797–1803

    Article  Google Scholar 

  • Cottone F, Gammaitoni L, Vocca H et al (2012) Piezoelectric buckled beams for random vibration energy harvesting[J]. Smart Mater Struct 21(3):035021

    Article  Google Scholar 

  • Erturk A, Inman DJ (2008) A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters. J Vib Acoust 130:1–15

    Article  Google Scholar 

  • Erturk A, Inman DJ (2011) Piezoelecric energy harvesting. Wiley, UK

    Book  Google Scholar 

  • Gradshtenyn IS, Ryzhik IM (1994) Table of Integrals Series, and Products. Academic, New York

  • Guyomar D, Lallart M (2011) Recent progress in piezoelectric conversion and energy harvesting using nonlinear electronic interfaces and issues in small scale implementation. Micromachines 2:274–294

    Article  Google Scholar 

  • Halvorsen E (2007) Broadband excitation of resonant energy harvesters. PowerMEMS, pp 319–322

  • Halvorsen E (2008) Energy harvesters driven by broadband random vibrations. J Microelectromech Syst 17(5):1061–1071

    Article  Google Scholar 

  • Harne RL, Wang KW (2013) A review of the recent research on vibration energy harvesting via bistable systems. Smart Mater Struct 22:1–12

    Google Scholar 

  • Hatipoglu G, Urey H (2010) FR4-based electromagnetic energy harvester for wireless sensor nodes. Smart Mater Struct 19:1–11

    Article  Google Scholar 

  • Jackson WC, Brian KH, Emiliano SR (2013) Experimental analysis of a piezoelectric energy harvesting system for harmonic, random, and sine on random vibration. Adv Acoust Vib. doi:10.1155/2013/241025

  • James D, Paul DM (2012) Power-extraction circuits for piezoelectric energy harvesters in miniature and low-power applications. IEEE Trans Power Electron 11:4514–4530

    Google Scholar 

  • Karami MA, Inman DJ (2011) Electromechanical modeling of the low-frequency Zigzag micro-energy harvester. J Intell Mater Syst Struct 22:271–282

    Article  Google Scholar 

  • Karami MA, Inman DJ (2012) Powering pacemakers from heartbeat vibrations using linear and nonlinear energy harvesters. Appl Phys Lett 100:042901–042904

    Article  Google Scholar 

  • Lallart M, Inman DJ (2010) Mechanical effect of combined piezoelectric and electromagnetic energy harvesting. Proc IMAC XXVIII:2.1–4

  • Lefeuvre E, Badel A, Richard C et al (2007) Energy harvesting using piezoelectric materials: case of random vibrations. J Electroceram 19(4):349–355

    Article  Google Scholar 

  • Ling CS, Dan H, Steve GB (2013) Technological challenges of developing wireless health and usage monitoring systems. In: Proc SPIE 8695, 86950 K-1

  • Liu CH (2008) Stochastic Process, 4th edn. Huazhong University of Science and Technology Press, China

    Google Scholar 

  • Liu H, Lee C, Kobayashi T (2012) A new S-shaped MEMS PZT cantilever for energy harvesting from low frequency vibrations below 30 Hz. Microsyst Technol 18:497–506

    Article  Google Scholar 

  • Liua H, Quana C, Taya CJ (2011) A MEMS-based piezoelectric cantilever patterned with PZT thin film array for harvesting energy from low frequency vibrations. Phys Proc 19:129–133

    Article  Google Scholar 

  • Mitcheson PD, Green TC, Yeatman EM (2007) Power processing circuits for electromagnetic, electrostatic and piezoelectric inertial energy scavengers. Microsyst Technol 13:1629–1635

    Article  Google Scholar 

  • Nicholas R, Natarajan B (2013) A structured approach to optimization of energy harvesting wireless sensor networks. In: The 10th annual IEEE CCNC, pp 420–425

  • Robert D, Wu WJ, Chen YY (2008) A hybrid piezoelectric and electromagnetic energy harvesting device. In: 19th international conference on AST 10, pp 6–9

  • Serre C, Rodríguez AP, Fondevilla N (2007) Vibrational energy scavenging with Si technology electromagnetic inertial microgenerators. Microsyst Technol 13:1655–1661

    Article  Google Scholar 

  • Shu YC, Lien IC (2006) Analysis of power output for piezoelectric energy harvesting systems. Smart Mater Struct 15:1499–1512

    Article  Google Scholar 

  • Spreemann D, Manoli Y (2012) Electromagnetic vibration energy harvesting devices. Springer, Germany

    Book  Google Scholar 

  • Tanesse Y, Zhang S, Priya S (2009) Multimodal energy harvesting system: piezoelectric and electromagnetic. J Intell Mater Syst Struct 20:625–633

    Google Scholar 

  • Tang L, Yang Y (2011) Analysis of synchronized charge extraction for piezoelectric energy harvesting. Smart Mater Struct 20:1–13

    MATH  Google Scholar 

  • Tang X, Zuo L (2012) Vibration energy harvesting from random force and motion excitations. Smart Mater Struct 21(7):075025

    Article  Google Scholar 

  • Torsten R, Armaghan S (2010) Analysis and modelling towards hybrid piezo-electromagnetic vibrating energy harvesting devices. In: AIP conference proceedings, vol 81, pp 81–85

  • Wacharasindhu T, Wkwon J (2008) A micromachined energy harvester from a keyboard using combined electromagnetic and piezoelectric conversion. J Micromech Microeng 18:1–8

    Google Scholar 

  • Wang P, Li W, Che L (2012) Design and fabrication of a micro electromagnetic vibration energy harvester. J Semicond 10:1–4

    MATH  Google Scholar 

  • Williams CB, Yates RB (1996) Analysis of a micro-electric generator for Microsystems. Sens Actuators, A 52:8–11

    Article  Google Scholar 

  • Wu X, Khaligh A, Xu Y (2008) Modeling, design and optimization of hybrid electromagnetic and piezoelectric MEMS energy scavengers. In: IEEE 2008 custom integrated circuits conference, pp 177–181

  • Wu WJ, WickenheiserA M, Reissman T (2009) Modeling and experimental verification of synchronized discharging techniques for boosting power harvesting from piezoelectric transducers. Smart Mater Struct 18:1–14

    Google Scholar 

  • Yang B, Lee C, Kee WL (2010) Hybrid energy harvester based on piezoelectric and electromagnetic mechanisms. J Micro Nanolith MEMS MOEMS 9:1–10

    Google Scholar 

  • Yogesh KR, Anantha PC (2010) An efficient piezoelectric energy harvesting interface circuit using a bias-flip rectifier and shared inductor. IEEE J Solid State Circuits 1:189–206

    Google Scholar 

  • Zhao S, Erturk A (2013) Electroelastic modeling and experimental validations of piezoelectric energy harvesting from broadband random vibrations of cantilevered bimorphs. Smart Mater Struct 22(1):015002

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National High Technology Research and Development Program of China (Grant No. SS2013AA041104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Li.

Appendix

Appendix

By using the table in reference (Gradshtenyn and Ryzhik 1994), for the system if the complex frequency response function is of the form

$$H(\omega ) = \frac{{i\omega B_{1} + (i\omega )^{2} B_{2} }}{{A_{0} + i\omega A_{1} + (i\omega )^{2} A_{2} + (i\omega )^{3} A_{3} + (i\omega )^{4} A_{4} }}$$
(38)

Their integral of the square of the absolute value of complex frequency response can be computed as respectively

$$\int\limits_{ - \infty }^{\infty } {\left| {H(\omega )^{2} } \right|} d\omega = \pi \frac{{ - A_{1} B_{2}^{2} - A_{3} B_{1}^{2} }}{{A_{0} A_{3}^{2} + A_{1}^{2} A_{4} - A_{1} A_{2} A_{3} }}$$
(39)

Also the integral for the transfer function in equation is

$$\int\limits_{ - \infty }^{ + \infty } {\left| {\frac{{i\omega B_{1} + (i\omega )^{2} B_{2} }}{{A_{0} + i\omega A_{1} + (i\omega )^{2} A_{2} + (i\omega )^{3} A_{3} }}} \right|^{2} d\omega } = \pi \frac{{B_{2}^{2} A_{1} + B_{1}^{2} A_{3} }}{{A_{3} (A_{1} A_{2} - A_{0} A_{3} )}}$$
(40)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, P., Gao, S. & Cai, H. Modeling and analysis of hybrid piezoelectric and electromagnetic energy harvesting from random vibrations. Microsyst Technol 21, 401–414 (2015). https://doi.org/10.1007/s00542-013-2030-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-013-2030-6

Keywords

Navigation