Skip to main content
Log in

Design and analysis of MEMS based piezoelectric micro pump integrated with micro needle

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

This paper presents the design and simulation of piezoelectric micro pump integrated with micro needle. The proposed micro pump adopted rectangular piezoelectric vibrator supplied with an external alternating current voltage. It has four primary components: electrodes, piezoelectric plate, PDMS (polydimethylsiloxane) membrane and channel with inlet and outlet bottom up and whole setup is constructed on a glass base. The simulations are carried out by subjecting the developed model to voltage changes, material changes which shows the satisfactory results. The micro pump possesses a flow rate of 4.1 ml/min at an input voltage 10 V with frequency 300 Hz while it is integrated with Micro Needle is having 4.67 ml/min. High pumping rates at low applied voltages making the proposed model significantly important for Transdermal controlled drug delivery applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Ashraf MW, Tayyaba S, Afzulpurkar N (2010) MEMS based polymeric drug delivery system. IEEE conference 978-1-4244-5449-5/10

  • Atul ST, Babu MCL (2016) Characterization of valve-less micro pump for drug delivery by using piezoelectric effect. 978-1-5090-2029-4/16

  • Cao L, Mantell S, Polla D (2001) Design and simulation of an implantable medical drug delivery system using microelectromechanical systems technology. Sens Actuators A 94:117–125

    Article  Google Scholar 

  • Chang HT, Lee CY, Wen CY (2007) Design and modeling of electromagnetic actuator in mems-based valveless impedance pump. Microsyst Technol 13:1615–1622

    Article  Google Scholar 

  • Cheng CH, Tseng YP (2013) Characteristic studies of the piezoelectrically actuated micro pump with check valve. Microsyst Technol 19:1707–1715

    Article  Google Scholar 

  • Cheng CH, Yang AS, Lin CJ, Huang WJ (2017) Characteristic studies of a novel piezoelectric impedance micro pump. Microsyst Technol 23:1709–1717

    Article  Google Scholar 

  • Cui Q, Liu C, Zha XF (2007) Study on piezoelectric micro pump for the controlled drug delivery system. Microfluid Nanofluid 3:377–390

    Article  Google Scholar 

  • Elman NM, Ho Duc HL, Cima MJ (2009) An implantable MEMS drug delivery device for rapid delivery in ambulatory emergency care. Biomed Micro Devices. https://doi.org/10.1007/s10544-008-9272-6

    Article  Google Scholar 

  • Farokhi H, Ghayesh MH (2015a) Thermo-mechanical dynamics of perfect and imperfect Timoshenko microbeams. Int J Eng Sci 91:12–33

    Article  MathSciNet  Google Scholar 

  • Farokhi H, Ghayesh MH (2015b) Nonlinear dynamical behaviour of geometrically imperfect microplates based on modified couple stress theory. Int J Mech Sci 90:133–144

    Article  Google Scholar 

  • Farokhi H, Ghayesh MH (2015c) Nonlinear motion characteristics of microarches under axial loads based on modified couple stress theory. Arch Civil Mech Eng 15:401–411

    Article  Google Scholar 

  • Ghayesh MH (2014) Nonlinear size-dependent behaviour of single-walled carbon nanotubes. Appl Phys A 117:1393–1399

    Article  Google Scholar 

  • Ghayesh MH, Amabili M (2014) Coupled longitudinal-transverse behaviour of a geometrically imperfect microbeam. Compos Part B 60:371–377

    Article  Google Scholar 

  • Ghayesh MH, Farokhi H (2015) Coupled longitudinal-transverse-rotational behaviour of shear deformable microbeams. Compos B 77:319–328

    Article  Google Scholar 

  • Ghayesh MH, Farokhi H, Amabili Marco (2013) Coupled nonlinear size-dependent behaviour of microbeams. Appl Phys A 112:329–338

    Article  Google Scholar 

  • Ghayesh MH, Farokhi H, Amabili M (2014a) In-plane and out-of-plane motion characteristics of microbeams with modal interactions. Compos Part B 60:423–439

    Article  Google Scholar 

  • Ghayesh MH, Farokhi H, Alici G (2014b) Subcritical parametric dynamics of microbeams. Int J Eng Sci 95:36–48

    Article  MathSciNet  Google Scholar 

  • Ghayesh MH, Farokhi H, Alici G (2016) Size-dependent performance of microgyroscopes. Int J Eng Sci 100:99–111

    Article  MathSciNet  Google Scholar 

  • Gholipour Alireza, Farokhi Hamed, Ghayesh Mergen H (2015) In-plane and out-of-plane nonlinear size-dependent dynamics of microplates. Nonlinear Dyn 79:1771–1785

    Article  Google Scholar 

  • Han X, Cao Q, Li L (2012) Design and evaluation of Three-dimensional electromagnetic guide system for magnetic drug delivery. IEEE Trans Appl Superconduct 22:3

    Article  Google Scholar 

  • Heggers JP, Kossovsky P, Robert W, Robson MC, Pelley RP, Raine TJ (1983) Biocompatibility of silicone implants. Ann Plast Surg 11(1):38–45

    Article  Google Scholar 

  • Jeong OC, Yang SS (2000) Fabrication and test of a theromopneumatic micro pump with a corrugated p + diaphragm. Sens Actuators A 83:249–255

    Article  Google Scholar 

  • Judy JW (2000) Biomedical applications of MEMS. In: Measurement and science technology conference Anaheim. CA, pp 403–414

  • Junwu K, Zhigang Y, Taijiang P, Guangming C, Boda W (2005) Design and test of a high-performance piezoelectric micro pump for drug delivery. Sens Actuators A 121:156–161

    Article  Google Scholar 

  • Liu G, Yang Z, Liu J, Li X, Wang H, Zhao T, Yang X (2014) A low cost, high performance insulin delivery system. Microsyst Technol 20:2287–2294

    Article  Google Scholar 

  • Lo R, Li PY, Saati S, Agrawal R, Humayun MS, Meng E (2008) A refillable microfabricated drug delivery device for treatment of ocular diseases. Lab Chip 8(7):1027–1030

    Article  Google Scholar 

  • Makino E, Mitsuya T, Shibata T (2001) Fabrication of TiNi shape memory micro pump. Sens Actuators A 88:256–262

    Article  Google Scholar 

  • Rashvand K, Rezazadeh G, Mobki H, Ghayesh MH (2013) On the size-dependent behavior of a capacitive circular micro-plate considering the variable length-scale parameter. Int J Mech Sci 77:333–342

    Article  Google Scholar 

  • Reynaerts D, Peris J, Van Brussel H (1997) An implantable drug-delivery system based on shape memory alloy micro-actuation. Sens Actuators A 61:455–462

    Article  Google Scholar 

  • Sateesh J, Sravani KG, Akshay Kumar R et al (2017) Design and flow analysis of MEMS based piezo-electric micro pump. Microsyst Technol. https://doi.org/10.1007/s00542-017-3563-x

    Article  Google Scholar 

  • Sommerfeld A (1883) Ein beitrag zur hydrodynamischen erklaerung der turbulenten fluessigkeitsbewegüngen. Phil Trans Lond R Soc 174:935 (und vol. 186 (1895) p. 123)

  • Song P, Tng DJH, Hu R, Lin G, Meng E, Yong K-T (2013) An electrochemically actuated MEMS device for individualized drug delivery: an in vitro study. Adv Healthc Mater 2(8):1170–1178

    Article  Google Scholar 

  • Song P, Hu R, Tng DJH, Yong K-T (2014) Moving towards individualized medicine with microfluidics technology. RSC Adv 4(22):11499–11511

    Article  Google Scholar 

  • Teymoori MM, Abbaspour-Sani E (2005) Design and simulation of a novel electrostatic peristaltic micro machined pump for drug delivery applications. Sens Actuators A 117:222–229

    Article  Google Scholar 

  • Zengerle R, Ulrich J, Kluge S, Richter M, Richter A (1995) A bidirectional silicon micro pump. Sens Actuators A 50:81–86

    Article  Google Scholar 

  • Zhang R, Jullien GA, Dalton C (2013) Study on an alternating current electrothermal micropump for microneedle based fluid delivery systems. J Appl Phys 114:024701

    Article  Google Scholar 

Download references

Acknowledgements

The Authors would like to thank to NMDC supported by NPMASS, National Institute of Technology, Silchar for providing the necessary computational tools. The corresponding author (Dr. K. Srinivasa Rao) would like to thank Science Engineering research Board (SERB), Govt. of India, New Delhi (Grant file no: ECRA/2016/000757) for providing partial financial assistance to carry out the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Srinivasa Rao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, K.S., Sateesh, J., Guha, K. et al. Design and analysis of MEMS based piezoelectric micro pump integrated with micro needle. Microsyst Technol 26, 3153–3159 (2020). https://doi.org/10.1007/s00542-018-3807-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-018-3807-4

Navigation