Skip to main content
Log in

Design and modeling of electromagnetic actuator in mems-based valveless impedance pump

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

This study models and optimizes the electromagnetic actuator in an MEMS-based valveless impedance pump. The actuator comprises an electroplated permanent magnet mounted on a flexible PDMS diaphragm and electroplated Cu coils located on a glass substrate. In optimizing the design of the actuator, the objective is to maximize the output flow rate of the micropump while maintaining the mechanical integrity of its constituent parts. The study commences by developing optimized theoretical models for each of the components within the actuator, namely the diaphragm, the magnet, and the micro-coils. The theoretical models are then verified numerically using FEA software. The magnitude of the magnetic force acting on the flexible diaphragm is calculated using Ansoft/Maxwell3D FEA software. The simulation results obtained by ANSYS FEA software for the diaphragm deflection are found to be in good agreement with the theoretical predictions. In general, the results show that the desired diaphragm deflection of 15 μm can be obtained by passing a current of 0.6–0.7 A through the micro-coil to produce a compression force of 11 μN. The valveless micro impedance pump proposed in this study is easily fabricated and is readily integrated with existing biomedical chips due to its plane structure. The results of this study provide a valuable contribution to the ongoing development of Lab-on-a Chip systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

a :

Radius of the diaphragm (μm)

B r :

The remanent magnetic induction field of the permanent magnet (T)

c :

Radius of the magnet (μm)

D :

Flexural rigidity of the diaphragm (KPa μm3)

E :

Elastic modulus of the diaphragm (KPa)

F :

total load acting on the diaphragm (μN)

FEA:

Finite element analysis

F lmt :

Elastic limit force of the diaphragm (μN)

F z :

Electromagnetic force between magnet and micro-coils in the vertical direction (μN)

h :

Thickness of the diaphragm (μm)

H z :

The vertical magnetic field generated by the microcoil (A/m)

κ:

The ratio of radius for the diaphragm (a) to the magnet (c)

MEMS:

Micro-electro-mechanical systems

PDMS:

Polydimethylsilxane

PZT:

Lead zirconate titanate

q :

The uniform load acting over a circular area located in the center of the diaphragm (μN/μm2)

S m :

Surface area of the magnet (μm2)

V m :

Volume of the magnet (μm3)

w max :

Maximum deflection of the diaphragm (μm)

ν:

Poisson’s ratio of the diaphragm

σ y :

Yield strength of the diaphragm (KPa)

H z /∂z :

the gradient of vertical magnetic field (A/m2)

References

  • Anderssona H, van der Wijngaart W, Nilsson P, Enoksson P, Stemme G (2001) A valve-lessdiffuser micropump for microfuidic analytical systems. Sens Actuat B 72:259–265

    Article  Google Scholar 

  • Berg JM, Anderson R, Anaya M, Lahlouh B, Holtz M, Dallas T (2003) A two-stage discrete peristaltic micropump. Sens Actuat A 104:6–10

    Article  Google Scholar 

  • Borzi A, Propst G (2003) Numerical investigation of the Liebau phenomenon. Z Angew Math Phys 54:1050–1072

    Article  MATH  MathSciNet  Google Scholar 

  • Chen W, Han DJ (1995) Plasticity for structural engineers. Gau Lih Book Co. Ltd, Taiwan

    Google Scholar 

  • Choi KM, Rogers JA (2003) A photocurable poly(dimethylsiloxane) chemistry designed for soft lithographic molding and printing in the nanometer regime. J Am Chem Soc 125:4060–4061

    Article  Google Scholar 

  • Cooney CG, Towe BC (2004) A thermopneumatic dispensing micropump. Sens Actuat A 116:519–524

    Article  Google Scholar 

  • Feustel A, Krusemark O, Muller J (1998) Numerical simulation and optimization of planar electromagnetic actuators. Sens Actuat A 70:276–282

    Article  Google Scholar 

  • Gong QL, Zhou ZY, Yang YH, Wang XH (2000) Design, optimization and simulation on microelectromagnetic pump. Sens Actuat A 83:200–207

    Article  Google Scholar 

  • Husband B, Bu M, Evans AGR, Melvin T (2004) Investigation for the operation of an integrated peristaltic micropump. J Micromech Microeng 14:S64–S69

    Article  Google Scholar 

  • Jiang X.N, Zhou ZY, Huang XY, Li Y, Yang Y, Liu CY (1998) Micronozzle/diffuser flow and its application in micro valveless pumps. Sens Actuat A 70:81–87

    Article  Google Scholar 

  • Liakopoulos TM, Zhang WJ, Ahn GH (1996) Electroplated thick CoNiMnP permanent magnet arrays for micromachined magnetic device applications. In: IEEE Proceedings of MEMS, pp 79–84

  • Olsson A, Stemme G, Stemme E (1995) A valve-less planar fluid pump with two pump chamber. Sens Actuat A 46–47:549–556

    Article  Google Scholar 

  • Olsson A, Enoksson P, Stemme G, Stemme E (1996) A valve-less planar pump isotropically etched in silicon. J Micromech Microeng 6:87–91

    Article  Google Scholar 

  • Olsson A, Enoksson P, Stemme G, Stemme E (1997) Micromachined flat-walled valveless nozzle pumps. J Microelectromech Syst 6:161–166

    Article  Google Scholar 

  • Rinderknecht D, Hickerson AI, Gharib M (2005) A valveless micro impedance pump driven by electromagnetic actuation. J Micromech Microeng 15:861–866

    Article  Google Scholar 

  • Schabmueller CGJ, Koch M, Mokhtari ME, Evans AGR, Brunnschweiler A, Sehr H (2002) Self-aligning gas/liquid micropump. J Micromech Microeng 12:420–424

    Article  Google Scholar 

  • Teymoori MM, Abbaspour-Sani E (2005) Design and simulation of a novel electrostatic peristaltic micromachined pump for drug delivery applications. Sens Actuat A 117:222–229

    Article  Google Scholar 

  • Timoshenko S, Woinowsky-Krieger S (1977) Theory of Plates and shells, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  • Wen CY, Cheng CH, Jian CN, Nguyen TA, Hsu CY, Su YR (2006) A valveless micro impedence pump driven by PZT actuation. Materials Sci Forum 505–507:127–132

    Article  Google Scholar 

  • Xu D, Wang L, Ding GF, Zhou Y, Yu AB, Cai BC (2001) Characteristics and fabrication of NiTi/Si diaphragm micropump. Sens Actuat A 93:87–92

    Article  Google Scholar 

  • Yamahata C, Lacharme F, Gijs MAM (2005) Glass valveless micropump using electromagnetic actuation. Microelectron Eng 78–79:132–137

    Article  Google Scholar 

  • Zengerle R, Ulrich J, Kluge S, Richter M, Richter A (1995) A bidirectional silicon micropump. Sens Actuat A 50:81–86

    Article  Google Scholar 

Download references

Acknowledgments

The current authors gratefully acknowledge the financial support provided to this study by the National Science Council of Taiwan (NSC-94-2211-E-212-009 & NSC-94-2218-E-006-045). Furthermore, the authors wish to express their gratitude to the National Center for High-Performance Computing (NCHC) for the access provided to the Ansoft/Maxwell3D software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chia-Yen Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, HT., Lee, CY. & Wen, CY. Design and modeling of electromagnetic actuator in mems-based valveless impedance pump. Microsyst Technol 13, 1615–1622 (2007). https://doi.org/10.1007/s00542-006-0332-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-006-0332-7

Keywords

Navigation