Skip to main content

Critical Review and Exploration on Micro-pumps for Microfluidic Delivery

  • Chapter
  • First Online:
MEMS and Microfluidics in Healthcare

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 989))

Abstract

This review covers various types of micro-pumps designs, and the design aspects of an IPMC actuator-based micro-pump are much focused on flow rate as the primary objective while maintaining a low power consumption. A detailed comparison of various diaphragm micro-pump types and pump structures is discussed. The need for durability led to the choice of valve-less micro-pump over their active counterparts. Choice of PEGDA (Polyethyleneglycoldiacrylate) as the membrane material for actuation has been proposed due to the ease of curing and biocompatibility aspect. In addition to the review, a 2D simulation of IPMC membrane has been performed for obtaining corresponding values of membrane displacement in COMSOL Mutliphysics. The valve-less nozzle/diffuser configuration with a conical angle of 4–6̊ allows the pump to provide the desired flow rate. The simulation results show the relationship between applied voltage, frequency, dimensions and displacement of actuator and the flow rate and accumulated flow volume for various cone angles of valve. Further, the backflow rates for conical and tesla valves have been observed at various pressures. Tesla valve exhibits a much lesser backflow rate of 240 µl/s at an inlet pressure of 130 Pa.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bourouina T, Bossebuf A, Grandchamp J-P (1997) Design and simulation of an electrostatic micro pump for drug-delivery applications. J Micromech Microeng 7(3):186

    Article  Google Scholar 

  2. Machauf A, Nemirovsky Y, Dinnar U (2005) A membrane micro pump electrostatically actuated across the working fluid. J Micromech Microeng 15(12):2309

    Article  Google Scholar 

  3. Kaçar A, Özer MB, Taşcıoğlu Y (2020) A novel artificial pancreas: energy efficient valve less piezoelectric actuated closed-loop insulin pump for T1DM. Appl Sci 10(15):5294

    Article  Google Scholar 

  4. Mohith S, Navin Karanth P, Kulkarni SM (2020) Performance analysis of valve less micro pump with disposable chamber actuated through Amplified Piezo Actuator (APA) for biomedical application, Mechatronics 67:102347. ISSN 0957–4158

    Google Scholar 

  5. He XH, Zhu JW, Zhang XT et al (2017) The analysis of internal transient flow and the performance of valve less piezoelectric micro pumps with planar diffuser/nozzles elements. Microsyst Technol 23(1):23–37

    Article  Google Scholar 

  6. Zhang JH, Wang Y, Huang J (2017) Advances in valve less piezoelectric pump with cone-shaped tubes. Chin J Mech Eng 30:766–781

    Article  Google Scholar 

  7. Bußmann A, Leistner H, Zhou D, Wackerle M, Congar Y, Richter M, Hubbuch J (2021) Piezoelectric silicon micro pump for drug delivery applications. Appl Sci 11:8008

    Article  Google Scholar 

  8. Shan J et al (2022) Implantable double-layer pump chamber piezoelectric valve less micro pump with adjustable flow rate function. J Micromech Microeng

    Google Scholar 

  9. Asadi Dereshgi, Hamid, Huseyin Dal, and Mustafa Zahid Yildiz. “Piezoelectric micro pumps: State of the art review.“ Microsystem Technologies 27.12 (2021): 4127–4155.

    Google Scholar 

  10. Chia BT, Liao H, Yang Y (2010) A novel thermo-pneumatic peristaltic micro pump with low temperature elevation on working fluid. Sens Actuat A 165:86–93

    Article  Google Scholar 

  11. Ha S-M, Cho W, Ahn Y (2009) Disposable thermo-pneumatic micro pump for bio lab-on-a-chip application. Microelectron Eng 86(4–6):1337–1339

    Article  Google Scholar 

  12. Chee PS et al (2015) Wireless powered thermo-pneumatic micro pump using frequency-controlled heater. Sens Actuat A: Phys 233:1–8

    Google Scholar 

  13. Hamid NA et al (2017) A stack bonded thermo-pneumatic micro-pump utilizing polyimide based actuator membrane for biomedical applications. Microsyst Technol 23(9):4037–4043 (2017)

    Google Scholar 

  14. Setiawan MA (2008) The performance evaluation of SMA Spring as actuator for gripping manipulation. J Teknik Elektro 7:110–120

    Google Scholar 

  15. Bhandari B, Lee G-Y, Ahn S-H (2012) A review on IPMC material as actuators and sensors: fabrications, characteristics and applications. Int J Precis Eng Manuf 13(1):141–163

    Article  Google Scholar 

  16. Jung K, Nam J, Choi H (2003) Investigations on actuation characteristics of IPMC artificial muscle actuator. Sens Actuat A 107(2):183–192

    Article  Google Scholar 

  17. Chung C-K et al (2006) A novel fabrication of ionic polymer-metal composites (IPMC) actuator with silver nano-powders. Sens Actuat B: Chem 117(2):367–375 (2006)

    Google Scholar 

  18. Gareev KG et al (2021) Microfluidic system for drug delivery based on microneedle array and IPMC valve less pump. In: 2021 IEEE conference of russian young researchers in electrical and electronic engineering (ElConRus). IEEE

    Google Scholar 

  19. Olvera D, Monaghan MG (2021) Electroactive material-based biosensors for detection and drug delivery. Adv Drug Deliv Rev 170:396–424

    Article  Google Scholar 

  20. Bußmann AB et al (2021) Microdosing for drug delivery application—A review. Sens Actuat A: Phys 330:112820 (2021)

    Google Scholar 

  21. Zhang Z et al (2022) Smart film actuators for biomedical applications. Small 2105116 (2022)

    Google Scholar 

  22. Ilami M et al (2021) Materials, actuators, and sensors for soft bioinspired robots. Adv Mater 33(19):2003139

    Google Scholar 

  23. Liu G, Shen C, Yang Z, Cai X, Zhang H (2010) A disposable piezoelectric micro pump with high performance for closed-loop insulin therapy system. Sens Actuat A 163:291–296

    Article  Google Scholar 

  24. Lee S, Yee SY, Besharatian A, Kim H, Bernal LP, Najafi K (2009) Adaptive gas pumping by controlled timing of active micro valves in peristaltic micro pumps. In: Proceedings of transducers, Denver, CO, pp 21–25

    Google Scholar 

  25. Kim JH, Na KH, Kang CJ, Kim YS (2005) A disposable thermopneumatic actuated micro pump stacked with PDMS layers and ITO coated glass. Sens Actuat A 120:365–369

    Article  Google Scholar 

  26. Fang T, Tan X (2010) A novel diaphragm micro pump actuated by conjugated polymer petals: Fabrication, modeling, and experimental results. Sens Actuat A 158:121–131

    Article  Google Scholar 

  27. Al-Halhouli AT, Kilani MI, Büttgenbacha S (2010) Development of a novel electromagnetic pump for biomedical applications. Sens Actuat A 162:172–176

    Article  Google Scholar 

  28. Zou JX, Ye YZ, Zhou Y, Yang Y (1997) A novel thermally actuated silicon micro pump. In: International symposium on micromechatronics and human science, Nagoya, Japan, pp 5–8

    Google Scholar 

  29. Yamahata C et al (2005) A PMMA valve less micro pump using electromagnetic actuation. Microfluidics Nanofluidics 1(3):197–207 (2005)

    Google Scholar 

  30. Pun AM, Lo JH, Louie DC et al (2007) Micro-fabrication of the non-moving part valve micro-pump by hot-embossing technology. World congress on medical physics and biomedical engineering. Springer, Berlin 1:242–245

    Google Scholar 

  31. Sim WY, Lee SW, Yang SS (2021) The fabrication and test of a phase-change type micro pump. In: IMECE2001/MEMS-23870, pp 479–484

    Google Scholar 

  32. Zhang HJ, Qiu CJ (2006) A TiNiCu thin film micro pump made by magnetron Co-sputtered method. Mat Trans 47:532–535

    Article  Google Scholar 

  33. Pak JJ et al (2004) Fabrication of ionic-polymer-metal-composite (IPMC) micro pump using a commercial Nafion. In: Smart structures and materials, vol 5385. SPIE, p 9

    Google Scholar 

  34. Lee S, Kim KJ (2006) Design of IPMC actuator-driven valve-less micro pump and its flow rate estimation at low Reynolds numbers. Smart Mater Struct 15(4):1103

    Article  Google Scholar 

  35. Nguyen TT, Nguyen VK, Yoo Y, Goo NS (2006) A novel polymeric micro pump based on a multilayered ionic polymer-metal composite. In: IECON 2006 - 32nd annual conference on IEEE industrial electronics, pp 4888–4893

    Google Scholar 

  36. Nguyen TT, Goo NS, Nguyen VK, Yoo Y, Park S (2008) Design, fabrication, and experimental characterization of a flap valve IPMC micro pump with a flexibly supported diaphragm. Sens Actuat A 141(2):640–648

    Article  Google Scholar 

  37. Santos J, Lopes B, Branco PJC (2010) Ionic polymer–metal composite material as a diaphragm for micro pump devices. Sens Actuat A 161(1):225–233

    Article  Google Scholar 

  38. Wei W, Guo S (2010) A novel PDMS diaphragm micro pump based on ICPF actuator. In: International conference on robotics and biomimetics, pp 1577–1583

    Google Scholar 

  39. McDaid J, Aw KC, Haemmerle E, Xie SQ (2012) Control of IPMC actuators for microfluidics with adaptive “online” iterative feedback tuning. IEEE/ASME Trans Mechatron 17(4):789–797

    Article  Google Scholar 

  40. Rajapaksha CPH, Feng C, Piedrahita C, Cao J, Kaphle V, Lüssem B, Kyu T, Jákli A (2020) Poly(ethylene glycol) diacrylate based electro-active ionic elastomer. Macromolecul Rapid Commun J 41:1900636

    Article  Google Scholar 

  41. Schabmueller CGJ, Koch M, Mokhtari ME et al (2002) Self-aligning gas/liquid micro pump. J Micromech Microeng 12(4):420

    Article  Google Scholar 

  42. Huang XY, Wang SS, Yang (2009) Single-nozzle micro pumps. In: Proceedings of the ASME 2009 7th international conference on nanochannels, microchannels, and minichannels, Pohang, South Korea. June 22–24, pp 717–721

    Google Scholar 

  43. Annabestani M, Fardmanesh M (2019) Ionic electro active polymer-based soft actuators and their applications in microfluidic micro pumps, micro valves, and micromixers: a review. arXiv:1904.07149

  44. Pugal D, Kim KJ, Aabloo A (2011) An explicit physics-based model of ionic polymer-metal composite actuators. J Appl Phys 110

    Google Scholar 

  45. Pugal D, Stalbaum T, Palmre V, Kim KJ (2016) Modelling ionic polymer metal composites with COMSOL. In: IPMCs smart multi-functional materials, and artificial muscles, vol 1, Chapter 5

    Google Scholar 

  46. Sangki L, Kwang JK (2006) Design of IPMC actuator-driven valve-less micro pump and its flow rate estimation at low Reynolds Numbers. Smart Mater Struct 15(4):1103

    Article  Google Scholar 

  47. Ashraf MW, Tayyaba S, Afzulpurkar N (2011) Micro electromechanical systems (MEMS) based microfluidic devices for biomedical applications. Int J Mol Sci 12:3648–3704

    Article  Google Scholar 

  48. Pawar SJ, Singh R (2017) Parametric simulation and flow visualization of micro-diffuser used in MEMS and microsystem devices. Int J Mech Product Eng. ISSN: 2320–2092

    Google Scholar 

  49. Tan HY, Loke WK, Nguyen N (2010) A reliable method for bonding polydimethylsiloxane (PDMS) to polymethylmethacrylate (PMMA) and its application in micro pumps. Sens Actuat B 151:133–139

    Article  Google Scholar 

  50. Ziaie B, Baldi A, Lei M, Yuandong Gu (2004) Ronald A Siegel, Hard and soft micromachining for BioMEMS: review of techniques and examples of applications in microfluidics and drug delivery. Adv Drug Deliv Rev 56(2):145–172

    Article  Google Scholar 

  51. Riahi R, Tamayol A, Shaegh SAM, Ghaemmaghami AM, Dokmeci MR, Khademhosseini A (2015) Microfluidics for advanced drug delivery systems. Current Opin Chem Eng 7: 101–112

    Google Scholar 

  52. Ahn J, Ko J, Lee S, James Yu, Kim YongTae (2018) Noo Li Jeon, Microfluidics in nanoparticle drug delivery. From synthesis to pre-clinical screening. Advanced drug delivery reviews 128:29–53

    Article  Google Scholar 

  53. Amirouche F, Zhou Y, Johnson T (2009) Current micro pump technologies and their biomedical applications. Microsyst Technol 15:647–666

    Article  Google Scholar 

  54. Aishan Y, Yalikun Y, Shen Y, Yuan Y, Amaya S, Okutaki T, Osaki A, Maeda S, Tanaka Y (2021) A chemical micro pump actuated by self-oscillating polymer gel. Sens Actuat B: Chem 337

    Google Scholar 

  55. Yamahata C, Lacharme F, Gijs MA (2005) Glass valve less micro pump using electromagnetic actuation. Microelectron Eng 78:132–137

    Google Scholar 

  56. Nisar A et al (2008) MEMS-based micro pumps in drug delivery and biomedical applications. Sens Actuat B: Chem 130(2):917–942

    Google Scholar 

  57. Lai H-Y, Kang J-H (2021) System modeling and characterization of enhanced valve less micro pumps. Mech Based Design Struct Mach 1–22

    Google Scholar 

  58. Kalyonov VE et al (2020) Valve less microfluidic pump based on IPMC actuator for drug delivery. In: 2020 IEEE conference of Russian young researchers in electrical and electronic engineering (EIConRus). IEEE

    Google Scholar 

  59. Chappel E, Dumont-Fillon D (2021) Micro pumps for drug delivery. Drug Delivery Devices Therapeut Syst 31–61

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. Sreeja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Prithvi, J., Sreeja, B.S., Radha, S., Joshitha, C., Gowthami, A. (2023). Critical Review and Exploration on Micro-pumps for Microfluidic Delivery. In: Guha, K., Dutta, G., Biswas, A., Srinivasa Rao, K. (eds) MEMS and Microfluidics in Healthcare. Lecture Notes in Electrical Engineering, vol 989. Springer, Singapore. https://doi.org/10.1007/978-981-19-8714-4_5

Download citation

Publish with us

Policies and ethics