Skip to main content
Log in

The Pontryagin Maximum Principle in the Wasserstein Space

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We prove a Pontryagin Maximum Principle for optimal control problems in the space of probability measures, where the dynamics is given by a transport equation with non-local velocity. We formulate this first-order optimality condition using the formalism of subdifferential calculus in Wasserstein spaces. We show that the geometric approach based on needle variations and on the evolution of the covector (here replaced by the evolution of a mesure on the dual space) can be translated into this formalism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. We omit the dependence on p for clarity and conciseness.

  2. Namely, \(\nu _T^*(t)\) is defined as the \(\mu ^*(T)\)-almost uniquely determined measure which has \(\mu ^*(T)\) as its first marginal and which disintegration is given by \(\{ \sigma ^*_x(t)\}_x\) (see Definition 4).

  3. Recall that \(\bar{\varvec{\gamma }}^{\circ }_{\varphi }(\cdot )\) is a continuous map by hypothesis (B).

References

  1. Achdou, Y., Laurière, M.: On the system of partial differential equations arising in mean field type control. Discrete Contin. Dyn. Syst. A 35(9), 3879–3900 (2015)

    Article  MathSciNet  Google Scholar 

  2. Achdou, Y., Laurière, M.: Mean field type control with congestion. Appl. Math. Optim. 73(3), 393–418 (2016)

    Article  MathSciNet  Google Scholar 

  3. Albi, G., Bongini, M., Cristiani, E., Kalise, D.: Invisible control of self-organizing agents leaving unknown environments. SIAM J. Appl. Math. 76(4), 1683–1710 (2016)

    Article  MathSciNet  Google Scholar 

  4. Ambrosio, L.: Transport equation and cauchy problem for bv vector fields. Invent. Math. 158, 227–260 (2004)

    Article  MathSciNet  Google Scholar 

  5. Ambrosio, L., Gangbo, W.: Hamiltonian ODEs in the Wasserstein space of probability measures. Commun. Pure Appl. Math. 61(1), 18–53 (2008)

    Article  MathSciNet  Google Scholar 

  6. Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics ETH Zürich, 2nd edn. Birkhäuser, Basel (2008)

    MATH  Google Scholar 

  7. Ballerini, M., Cabibbo, N., Candelier, R., et al.: Interaction ruling animal collective behavior depends on topological rather than metric distance: evidence from a field study. Proc. Natl. Acad. Sci. 105(4), 1232–1237 (2008)

    Article  Google Scholar 

  8. Bellomo, N., Degond, P., Tadmor, E., et al.: Active Particles, Volume 1: Advances in Theory, Models, and Applications. Springer, Berlin (2017)

    Book  Google Scholar 

  9. Bellomo, N., Herrero, M.A., Tosin, A.: On the dynamics of social conflicts: looking for the Black Swan. Kinet Relat Models 6(3), 459–479 (2013)

    Article  MathSciNet  Google Scholar 

  10. Bongini, M., Fornasier, M., Rossi, F., Solombrino, F.: Mean field Pontryagin maximum principle. J. Optim. Theory Appl. 175, 1–38 (2017)

    Article  MathSciNet  Google Scholar 

  11. Bressan, A., Piccoli, B.: Introduction to the Mathematical Theory of Control. AIMS Series on Applied Mathematics, vol. 2. American Institute of Mathematical Sciences (AIMS), Springfield (2007)

    MATH  Google Scholar 

  12. Caponigro, M., Piccoli, B., Rossi, F., Trélat, E.: Mean-field sparse Jurdjevic–Quinn control. Math. Models Methods Appl. Sci. 27(7), 1223–1253 (2017)

    Article  MathSciNet  Google Scholar 

  13. Caponigro, M., Piccoli, B., Rossi, F., Trélat, E.: Sparse Jurdjevic–Quinn stabilization of dissipative systems. Automatica 86, 110–120 (2017)

    Article  MathSciNet  Google Scholar 

  14. Carrillo, J., Lisini, S., Mainini, E.: Gradient flows for non-smooth interaction potentials. Nonlinear Anal. Theory Methods Appl. 100, 122–147 (2014)

    Article  MathSciNet  Google Scholar 

  15. Cavagnari, G., Marigonda, A., Nguyen, K., Priuli, F.: Generalized control systems in the space of probability measures. Set-Valued Var. Anal. 26(3), 663–691 (2018)

    Article  MathSciNet  Google Scholar 

  16. Clarke, F.: Functional Analysis, Calculus of Variations and Optimal Control. Springer, Berlin (2013)

    Book  Google Scholar 

  17. Cristiani, E., Piccoli, B., Tosin, A.: Multiscale Modeling of Pedestrian Dynamics, vol. 12. Springer, Berlin (2014)

    MATH  Google Scholar 

  18. Cucker, F., Smale, S.: Emergent behavior in flocks. IEEE Trans. Autom. Control 52(5), 852–862 (2007)

    Article  MathSciNet  Google Scholar 

  19. Diestel, J., Uhl, J.J.: Vector Measures, vol. 15. American Mathematical Society, Providence (1977)

    MATH  Google Scholar 

  20. DiPerna, R., Lions, P.L.: Ordinary differential equations, transport theory and sobolev spaces. Invent. Math. 98, 511–547 (1989)

    Article  MathSciNet  Google Scholar 

  21. Duprez, M., Morancey, M., Rossi, F.: Approximate and exact controllability of the continuity equation with a localized vector field. SIAM J. Control Optim. (2018). arXiv:1710.09287

  22. Evans, L., Gariepy, R.: Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1992)

    MATH  Google Scholar 

  23. Ferscha, A., Zia, K.: Lifebelt: crowd evacuation based on vibro-tactile guidance. IEEE Pervasive Comput. 9(4), 33–42 (2010)

    Article  Google Scholar 

  24. Fornasier, M., Piccoli, B., Rossi, F.: Mean-field sparse optimal control. Philos. Trans. R. Soc. A 372(2028), 20130,400 (2014)

    Article  MathSciNet  Google Scholar 

  25. Fornasier, M., Solombrino, F.: Mean field optimal control. Esaim COCV 20(4), 1123–1152 (2014)

    Article  MathSciNet  Google Scholar 

  26. Gangbo, W., Nguyen, T., Tudorascu, A.: Hamilton–Jacobi equations in the wasserstein space. Methods Appl. Anal. 15(2), 155–184 (2008)

    MathSciNet  MATH  Google Scholar 

  27. Gianazza, U., Savaré, G., Toscani, G.: The Wasserstein gradient flow of the Fisher information and the quantum drift-diffusion equation. Arch. Ration. Mech. Anal. 1(194), 133–220 (2009)

    Article  MathSciNet  Google Scholar 

  28. Hegselmann, R., Krause, U.: Opinion dynamics and bounded confidence models, analysis, and simulation. J. Artif. Soc. Soc. Simul. 5(3), 2 (2002)

  29. Maury, B., Venel, J.: A mathematical framework for a crowd motion model. C. R. Math. 346(23), 1245–1250 (2008)

    Article  MathSciNet  Google Scholar 

  30. Maury, B., Venel, J.: A discrete contact model for crowd motion. ESAIM Math. Model. Numer. Anal. 45(1), 145–168 (2011)

    Article  MathSciNet  Google Scholar 

  31. Muntean, A., Rademacher, J., Zagaris, A.: Macroscopic and Large Scale Phenomena: Coarse Graining, Mean Field Limits and Ergodicity. Springer, Berlin (2016)

    Book  Google Scholar 

  32. Piccoli, B., Rossi, F.: Transport equation with nonlocal velocity in Wasserstein spaces: convergence of numerical schemes. Acta Appl. Math. 124(1), 73–105 (2013)

    Article  MathSciNet  Google Scholar 

  33. Piccoli, B., Rossi, F., Trélat, E.: Control of the kinetic Cucker–Smale model. SIAM J. Math. Anal. 47(6), 4685–4719 (2015)

    Article  MathSciNet  Google Scholar 

  34. Spohn, H.: Large Scale Dynamics of Interacting Particles. Springer, Berlin (2012)

    MATH  Google Scholar 

  35. Villani, C.: Optimal Transport : Old and New. Springer, Berlin (2009)

    Book  Google Scholar 

  36. Vlasov, A.: Many-Particle Theory and its Application to Plasma. Gordon and Breach, New York (1961)

    Google Scholar 

Download references

Acknowledgements

This work has been carried out in the framework of Archimde Labex (ANR-11-LABX-0033) and of the A*MIDEX project (ANR- 11-IDEX-0001-02), funded by the “Investissements d’Avenir” French Government program managed by the French National Research Agency (ANR).

The authors also thank the reviewer for the several useful comments that he/she provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoît Bonnet.

Additional information

Communicated by L. Ambrosio.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonnet, B., Rossi, F. The Pontryagin Maximum Principle in the Wasserstein Space. Calc. Var. 58, 11 (2019). https://doi.org/10.1007/s00526-018-1447-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-018-1447-2

Mathematics Subject Classification

Navigation