Skip to main content
Log in

Necessary Optimality Conditions for Optimal Control Problems in Wasserstein Spaces

  • Published:
Applied Mathematics & Optimization Aims and scope Submit manuscript

A Publisher Correction to this article was published on 14 September 2021

This article has been updated

Abstract

In this article, we derive first-order necessary optimality conditions for a constrained optimal control problem formulated in the Wasserstein space of probability measures. To this end, we introduce a new notion of localised metric subdifferential for compactly supported probability measures, and investigate the intrinsic linearised Cauchy problems associated to non-local continuity equations. In particular, we show that when the velocity perturbations belong to the tangent cone to the convexification of the set of admissible velocities, the solutions of these linearised problems are tangent to the solution set of the corresponding continuity inclusion. We then make use of these novel concepts to provide a synthetic and geometric proof of the celebrated Pontryagin Maximum Principle for an optimal control problem with inequality final-point constraints. In addition, we propose sufficient conditions ensuring the normality of the maximum principle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Albi, G., Bongini, M., Cristiani, E., Kalise, D.: Invisible control of self-organizing agents leaving unknown environments. SIAM J. Appl. Math. 76(4), 1683–1710 (2016)

  2. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variations and Free Discontinuity Problems. Oxford Mathematical Monographs. Clarendon Press, Oxford (2000)

    MATH  Google Scholar 

  3. Ambrosio, L., Gigli, N.: Construction of the parallel transport in the Wasserstein space. Methods Appl. Anal. 15(1), 1–30 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel (2008)

    MATH  Google Scholar 

  5. Aubin, J.-P., Cellina, A.: Differential Inclusions. Springer, Dordrecht (1984)

    Book  MATH  Google Scholar 

  6. Aubin, J.-P., Frankowska, H.: Set-Valued Analysis. Birkhäuser, Basel (1990)

    MATH  Google Scholar 

  7. Bellomo, N., Herrero, M.A., Tosin, A.: On the dynamics of social conflicts: looking for the black swan. Kinet. Relat. Models 6(3), 459–479 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bongini, M., Fornasier, M., Rossi, F., Solombrino, F.: Mean field Pontryagin maximum principle. J. Optim. Theory Appl. 175, 1–38 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bonnet, B.: A Pontryagin maximum principle in Wasserstein spaces for constrained optimal control problems. ESAIM COCV 25(52), 38 (2019)

    MathSciNet  MATH  Google Scholar 

  10. Bonnet, B., Frankowska, H.: Differential inclusions in Wasserstein spaces: the Cauchy–Lipschitz framework. J. Differ. Equ. 271, 594–637 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bonnet, B., Rossi, F.: The Pontryagin maximum principle in the Wasserstein space. Calc. Var. Partial Differ. Equ. 58, 11 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bonnet, B., Rossi, F.: Intrinsic Lipschitz regularity of mean-field optimal controls. SIAM J. Control Optim. (2021). arXiv:1908.04183 (to appear)

  13. Bressan, A., Piccoli, B.: Introduction to the Mathematical Theory of Control. AIMS Series on Applied Mathematics, vol. 2. American Institute of Mathematical Sciences (AIMS), Springfield (2007)

    MATH  Google Scholar 

  14. Bullo, F., Cortés, J., Martines, S.: Distributed Control of Robotic Networks. Applied Mathematics. Princeton University Press, Princeton (2009)

    Book  Google Scholar 

  15. Caponigro, M., Piccoli, B., Rossi, F., Trélat, E.: Mean-field sparse Jurdjevic–Quinn control. Math. Models Methods Appl. Sci. 27(7), 1223–1253 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Carmona, R., Delarue, F.: Forward–backward stochastic differential equations and controlled McKean Vlasov dynamics. Ann. Probab. 43(5), 2647–2700 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Carmona, R., Delarue, F.: Probabilistic Theory of Mean-Field Games with Applications. Springer, Cham (2018)

    Book  MATH  Google Scholar 

  18. Cavagnari, G., Lisini, S., Orrieri, C., Savaré, G.: Lagrangian, Eulerian and Kantorovich Formulations of Multi-agent Optimal Control Problems: Equivalence and Gamma-Convergence. arxiv preprint (2021). arXiv:2011.07117

  19. Cavagnari, G., Marigonda, A., Piccoli, B.: Superposition principle for differential inclusions. In: Large-Scale Scientific Computing, 201–209 (2018)

  20. Choi, Y.-P., Carrillo, J.A., Hauray, M.: The derivation of swarming models: mean-field limit and Wasserstein distances. In: Collective Dynamics from Bacteria to Crowds, CISM International Centre for Mechanical Sciences, vol 553, 1–46. Springer, Wien (2014)

  21. Cristiani, E., Piccoli, B., Tosin, A.: Multiscale Modeling of Pedestrian Dynamics, vol. 12. Springer, Cham (2014)

    MATH  Google Scholar 

  22. Cucker, F., Smale, S.: On the mathematics of emergence. Jpn. J. Math. 2(1), 197–227 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Dafermos, C.M., Feireisl, E.: Handbook of Differential Equations: Evolutionary Equations, vol. 3. North-Holland, Amsterdam (2006)

    MATH  Google Scholar 

  24. Diestel Jr., J., Uhl, J.J.: Vector Measures, vol. 15. American Mathematical Society, Providence (1977)

    MATH  Google Scholar 

  25. Fornasier, M., Lisini, S., Orrieri, C., Savaré, G.: Mean-field optimal control as gamma-limit of finite agent controls. Eur. J. Appl. Math. 30(6), 1153–1186 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  26. Fornasier, M., Solombrino, F.: Mean field optimal control. ESAIM COCV 20(4), 1123–1152 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Frankowska, H.: The maximum principle for an optimal solution to a differential inclusion with end-point constraints. SIAM J. Control Optim. 25(1), 145–157 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  28. Frankowska, H.: A priori estimates for operational differential inclusions. J. Differ. Equ. 84, 100–128 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  29. Frankowska, H., Lü, Q.: First and second order necessary optimality conditions for controlled stochastic evolution equations with control and state constraints. J. Differ. Equ. 268(6), 2949–3015 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  30. Frankowska, H., Marchini, E.M., Mazzola, M.: Necessary optimality conditions for infinite dimensional state constrained control problems. J. Differ. Equ. 264(12), 7294–7327 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  31. Frankowska, H., Osmolovskii, N.P.: Second-order necessary conditions for a strong local minimum in a control problem with general control constraints. Appl. Math. Optim. 80(1), 135–164 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  32. Frankowska, H., Osmolovskii, N.P.: Strong local minimizers in optimal control problems with state constraints: second order necessary conditions. SIAM J. Control Optim. 58(3), 2353–2376 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  33. Frankowska, H., Osmolovskii, N.P.: Distance estimates to feasible controls for systems with final point constraints and second order necessary optimality conditions. Syst. Control Lett. 144, 104770 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  34. Frankowska, H., Zhang, H., Zhang, X.: Stochastic optimal control problems with control and initial–final states constraints. SIAM J. Control Optim. 56(3), 1823–1855 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  35. Gangbo, W., Tudorascu, A.: On differentiability in the Wasserstein space and well-posedness for Hamilton–Jacobi equations. J. Math. Pures Appl. 125, 119–174 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  36. Jimenez, C., Marigonda, A., Quincampoix, M.: Optimal control of multiagent systems in the Wasserstein space. Calc. Var. Partial Differ. Equ. 59, 58 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  37. Lasry, J.-M., Lions, P.-L.: Mean field games. Jpn. J. Math. 2(1), 229–260 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  38. McCann, R.J.: A convexity principle for interacting gases. Adv. Math. 128(1), 153–179 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  39. Muntean, A., Rademacher, J., Zagaris, A.: Macroscopic and Large Scale Phenomena: Coarse Graining, Mean Field Limits and Ergodicity. Springer, Cham (2016)

    Book  MATH  Google Scholar 

  40. Otto, F.: The geometry of dissipative equations: the porous medium equation. Commun. Partial Differ. Equ. 26, 101–174 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  41. Piccoli, B., Rossi, F.: Transport equation with nonlocal velocity in Wasserstein spaces: convergence of numerical schemes. Acta Appl. Math. 124(1), 73–105 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  42. Piccoli, B., Rossi, F., Trélat, E.: Control to flocking of the kinetic Cucker–Smale model. SIAM J. Math. Anal. 47(6), 4685–4719 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  43. Pogodaev, N.: Optimal control of continuity equations. Nonlinear Differ. Equ. Appl. 23, 21 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  44. Pogodaev, N., Saritsyn, M.: Impulsive control of nonlocal transport equation. J. Differ. Equ. 269(4), 3585–3623 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  45. Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mischenko, E.F.: The Mathematical Theory of Optimal Processes, vol. 4. CRC Press, Boca Raton (1987)

    Google Scholar 

  46. Santambrogio, F.: Optimal Transport for Applied Mathematicians, vol. 87. Birkhauser, Basel (2015)

    MATH  Google Scholar 

  47. Villani, C.: Optimal Transport: Old and New. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the Air Force Office of Scientific Research under Award Number FA9550-18-1-0254.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoît Bonnet.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonnet, B., Frankowska, H. Necessary Optimality Conditions for Optimal Control Problems in Wasserstein Spaces. Appl Math Optim 84 (Suppl 2), 1281–1330 (2021). https://doi.org/10.1007/s00245-021-09772-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-021-09772-w

Keywords

Mathematics Subject Classification

Navigation