Skip to main content
Log in

Transport equation and Cauchy problem for BV vector fields

  • Published:
Inventiones mathematicae Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Aizenman, M.: On vector fields as generators of flows: a counterexample to Nelson’s conjecture. Ann. Math. 107, 287–296 (1978)

    MATH  Google Scholar 

  2. Alberti, G.: Rank-one properties for derivatives of functions with bounded variation. Proc. R. Soc. Edinb., Sect. A, Math. 123, 239–274 (1993)

    Google Scholar 

  3. Alberti, G., Ambrosio, L.: A geometric approach to monotone functions in ℝn. Math. Z. 230, 259–316 (1999)

    MATH  Google Scholar 

  4. Alberti, G., Müller, S.: A new approach to variational problems with multiple scales. Commun. Pure Appl. Math. 54, 761–825 (2001)

    Article  MATH  Google Scholar 

  5. Alberti, G.: Personal communication

  6. Ambrosio, L., Fusco, N., Pallara, D.: Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs 2000

  7. Ambrosio, L., Kirchheim, B., Lecumberry, M., Riviere, T.: On the rectifiability of defect measures arising in a micromagnetics model. Nonlinear Problems in Mathematical Physics and related topics II, in honor of O.A. Ladyzhenskaya, ed. by M.S. Birman, S. Hildebrandt, V.A. Solonnikov and N. Uraltseva pp. 29–60. International Mathematical Series, Kluwer/Plenum 2002

  8. Ambrosio, L., De Lellis, C.: Existence of solutions for a class of hyperbolic systems of conservation laws in several space dimensions. Int. Math. Res. Not. 41, 2205–2220 (2003)

    Article  MATH  Google Scholar 

  9. Ambrosio, L., Bouchut, F., De Lellis, C.: Well-posedness for a class of hyperbolic systems of conservation laws in several space dimensions. Preprint 2003 (submitted to Comm. PDE and available at http://cvgmt.sns.it)

  10. Benamou, J.-D., Brenier, Y.: Weak solutions for the semigeostrophic equation formulated as a couples Monge-Ampere transport problem. SIAM J. Appl. Math. 58, 1450–1461 (1998)

    Article  MATH  Google Scholar 

  11. Bouchut, F., James, F.: One dimensional transport equation with discontinuous coefficients. Nonlinear Anal. 32, 891–933 (1998)

    Article  MATH  Google Scholar 

  12. Bouchut, F.: Renormalized solutions to the Vlasov equation with coefficients of bounded variation. Arch. Ration. Mech. Anal. 157, 75–90 (2001)

    MATH  Google Scholar 

  13. Bressan, A.: An ill posed Cauchy problem for a hyperbolic system in two space dimensions. Preprint 2003

  14. Capuzzo Dolcetta, I., Perthame, B.: On some analogy between different approaches to first order PDE’s with nonsmooth coefficients. Adv. Math. Sci. Appl. 6, 689–703 (1996)

    Google Scholar 

  15. Castaing, C., Valadier, M.: Convex analysis and measurable multifunctions. Lect. Notes Math. 580. Berlin: Springer 1977

  16. Cellina, A.: On uniqueness almost everywhere for monotonic differential inclusions. Nonlinear Anal., Theory Methods Appl. 25, 899–903 (1995)

    Google Scholar 

  17. Cellina, A., Vornicescu, M.: On gradient flows. J. Differ. Equations 145, 489–501 (1998)

    Article  MATH  Google Scholar 

  18. Colombini, F., Lerner, N.: Uniqueness of continuous solutions for BV vector fields. Duke Math. J. 111, 357–384 (2002)

    Article  MATH  Google Scholar 

  19. Colombini, F., Lerner, N.: Uniqueness of L solutions for a class of conormal BV vector fields. Preprint 2003

  20. Colombini, F., Rauch, J.: Unicity and nonunicity for nonsmooth divergence free transport. Preprint 2003

  21. Cullen, M., Gangbo, W.: A variational approach for the 2-dimensional semi-geostrophic shallow water equations. Arch. Ration. Mech. Anal. 156, 241–273 (2001)

    Article  MATH  Google Scholar 

  22. Cullen, M., Feldman, M.: Lagrangian solutions of semigeostrophic equations in physical space. To appear

  23. De Lellis, C., Otto, F.: Structure of entropy solutions to the eikonal equation. J. Eur. Math. Soc. (JEMS) 5, 107–145 (2003)

    Article  MATH  Google Scholar 

  24. De Lellis, C., Otto, F., Westdickenberg, M.: Structure of entropy solutions for multi-dimensional conservation laws. Arch. Ration. Mech. Anal. 170, 137–184 (2003)

    Article  MATH  Google Scholar 

  25. De Pauw, N.: Non unicité des solutions bornées pour un champ de vecteurs BV en dehors d’un hyperplan. C.R. Math. Sci. Acad. Paris 337, 249–252 (2003)

    Google Scholar 

  26. Di Perna, R.J., Lions, P.L.: Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98, 511–547 (1989)

    MathSciNet  MATH  Google Scholar 

  27. Evans, L.C., Gariepy, R.F.: Lecture notes on measure theory and fine properties of functions. CRC Press 1992

  28. Federer, H.: Geometric measure theory. Springer 1969

  29. Hauray, M.: On Liouville transport equation with potential in BVloc. To appear on Commun. Partial Differ. Equations (2003)

  30. Hauray, M.: On two-dimensional Hamiltonian transport equations with Lploc coefficients. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 20, 625–644 (2003)

    Google Scholar 

  31. Lions, P.L.: Sur les équations différentielles ordinaires et les équations de transport. C. R. Acad. Sci., Paris, Sér. I, Math. 326, 833–838 (1998)

    Google Scholar 

  32. Petrova, G., Popov, B.: Linear transport equation with discontinuous coefficients. Commun. Partial Differ. Equations 24, 1849–1873 (1999)

    MATH  Google Scholar 

  33. Poupaud, F., Rascle, M.: Measure solutions to the liner multidimensional transport equation with non-smooth coefficients. Commun. Partial Differ. Equations 22, 337–358 (1997)

    MATH  Google Scholar 

  34. Young, L.C.: Lectures on the calculus of variations and optimal control theory. Saunders 1969

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Ambrosio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ambrosio, L. Transport equation and Cauchy problem for BV vector fields. Invent. math. 158, 227–260 (2004). https://doi.org/10.1007/s00222-004-0367-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-004-0367-2

Keywords

Navigation