Skip to main content
Log in

Transport Equation with Nonlocal Velocity in Wasserstein Spaces: Convergence of Numerical Schemes

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

Motivated by pedestrian modelling, we study evolution of measures in the Wasserstein space. In particular, we consider the Cauchy problem for a transport equation, where the velocity field depends on the measure itself.

We deal with numerical schemes for this problem and prove convergence of a Lagrangian scheme to the solution, when the discretization parameters approach zero. We also prove convergence of an Eulerian scheme, under more strict hypotheses. Both schemes are discretizations of the push-forward formula defined by the transport equation. As a by-product, we obtain existence and uniqueness of the solution.

All the results of convergence are proved with respect to the Wasserstein distance. We also show that L 1 spaces are not natural for such equations, since we lose uniqueness of the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ambrosio, L., Gangbo, W.: Hamiltonian ODEs in the Wasserstein space of probability measures. Commun. Pure Appl. Math. 61(1), 18–53 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bressan, A., Piccoli, B.: Introduction to the Mathematical Theory of Control. AIMS Ser. Appl. Math. AIMS, Springfield (2007)

    MATH  Google Scholar 

  3. Cristiani, E., Piccoli, B., Tosin, A.: Multiscale modeling of granular flows with application to crowd dynamics. Multiscale Model. Simul. 9, 155–182 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dukowicz, J.K., Kodis, J.W.: Accurate conservative remapping (rezoning) for arbitrary Lagrangian-Eulerian computations. SIAM J. Sci. Stat. Comput. 8(3), 305–321 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  5. Evers, J., Muntean, A.: Modeling micro-macro pedestrian counterflow in heterogeneous domains. Nonlinear Phenom. Complex Syst. 14(1), 27–37 (2011)

    MathSciNet  Google Scholar 

  6. Godlewski, E., Raviart, P.-A.: Numerical Approximation of Hyperbolic Systems of Conservation Laws. Springer, Berlin (1996)

    MATH  Google Scholar 

  7. Maury, B., Roudneff-Chupin, A., Santambrogio, F.: A macroscopic crowd motion model of gradient flow type. Int. J. Math. Models Methods Appl. Sci. 20(10), 1787–1821 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Maury, B., Roudneff-Chupin, A., Santambrogio, F., Venel, J.: Handling congestion in crowd motion modeling. Netw. Heterog. Media 6(3), 485–519 (2011)

    Article  MathSciNet  Google Scholar 

  9. Maury, B., Venel, J.: Un modèle de mouvement de foule. ESAIM Proc. 18, 143–152 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Piccoli, B., Tosin, A.: Time-evolving measures and macroscopic modeling of pedestrian flow. Arch. Ration. Mech. Anal. 199(3), 707–738 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Piccoli, B., Tosin, A.: Pedestrian flows in bounded domains with obstacles. Contin. Mech. Thermodyn. 21(2), 85–107 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Rachev, S.T.: Probability Metrics and the Stability of Stochastic Models. Wiley, New York (1991)

    MATH  Google Scholar 

  13. Tosin, A., Frasca, P.: Existence and approximation of probability measure solutions to models of collective behaviors. Netw. Heterog. Media 6(3), 561–596 (2011)

    Article  MathSciNet  Google Scholar 

  14. van Leer, B.: Towards the ultimate conservative difference scheme, V: a second-order sequel to Godunov’s method. J. Comput. Phys. 32(1), 101–136 (1979)

    Article  Google Scholar 

  15. Villani, C.: Optimal Transport: Old and New. Grundlehren der mathematischen Wissenschaften (2008)

    Google Scholar 

  16. Villani, C.: In: Topics in Optimal Transportation. Graduate Studies in Mathematics, vol. 58 (2003)

    Google Scholar 

  17. Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54(1), 115–173 (1984)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was conducted during a visit of F. Rossi to Rutgers University, Camden, NJ, USA. He thanks the institution for its hospitality.

The authors thank the anonymous reviewer for remarks and the suggested bibliography.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Rossi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piccoli, B., Rossi, F. Transport Equation with Nonlocal Velocity in Wasserstein Spaces: Convergence of Numerical Schemes. Acta Appl Math 124, 73–105 (2013). https://doi.org/10.1007/s10440-012-9771-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-012-9771-6

Keywords

Mathematics Subject Classification

Navigation