Skip to main content
Log in

On elliptic systems with Sobolev critical growth

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper, we study the following Dirichlet problem with Sobolev critical exponent

$$\begin{aligned} \left\{ \begin{array}{ll}\displaystyle -\Delta u=|u|^{2^*-2}u+\displaystyle \frac{\alpha }{2^*}|u|^{\alpha -2}|v|^{\beta }u,&{}\quad x\in \Omega , \\ -\Delta v=|v|^{2^*-2}v+\displaystyle \frac{\beta }{2^*}|u|^{\alpha }|v|^{\beta -2}v,&{}\quad x\in \Omega , \end{array} \right. \end{aligned}$$

where \(\alpha , \beta >1,\) \(\alpha +\beta =2^*:=\frac{2N}{N-2}(N\ge 3)\) and \(\Omega ={\mathbb {R}}^N\) or \(\Omega \) is a smooth bounded domain in \({\mathbb {R}}^N\). When \(\Omega ={\mathbb {R}}^N\), we obtain a uniqueness result on the least energy solutions and show that a manifold of the synchronized type of positive solutions is non-degenerate for the above system for some ranges of the parameters \(\alpha , \beta , N\). Our analysis also yields non-uniqueness of positive vector solutions for other parameters. Moreover, we establish a global compactness result and we extend a classical result of Coron on the existence of positive solutions of scalar equations with critical exponent on domains with nontrivial topology to the above elliptic system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adachi, S., Tanaka, K.: Four positive solutions for the semilinear elliptic equation: \(-\Delta u+u=a(x)u^p+f(x)\) in \({\mathbb{R}}^N\). Calc. Var. Partial Differ. Equ. 63, 63–95 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aubin, T.: Problemes isoperimetriques et espaces de Sobolev. J. Differ. Geom. 11, 573–598 (1976)

    MathSciNet  MATH  Google Scholar 

  3. Bahri, A., Coron, J.: On a nonlinear equation involving the critical Sobolev exponent: the effect of the topology of the domain. Commun. Pure Appl. Math. 41, 253–294 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bartsch, T., Dancer, N., Wang, Z.: A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system. Calc. Var. Partial Differ. Equ. 37, 345–361 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bianchi, G., Egnell, H.: A note on the Sobolev inequality. J. Funct. Anal. 100, 18–24 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brezis, H., Lieb, E.: A relation between pointwise convergence of functions and convergence of functions. Proc. Am. Math. Soc. 88, 486–490 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brezis, H., Nirenberg, L.: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Commun. Pure Appl. Math. 36, 437–477 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bhakta, M., Sandeep, K.: Hardy–Sobolev–Maz’ya type equations in bounded domains. J. Differ. Equ. 247, 119–139 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bartsch, T., Weth, T., Willem, M.: A Sobolev inequality with remainder term and critical equations on domains with topology for the polyharmonic operator. Calc. Var. Partial Differ. Equ. 18, 253–268 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Coron, J.: Topologie et cas limite des injections de Sobolev. C. R. Acad. Sci. Paris Ser. I 299, 209–212 (1984)

  11. Cao, D., Peng, S.: A global compactness result for singular elliptic problems involving critical Sobolev exponent. Proc. Am. Math. Soc. 131, 1857–1866 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen, W., Wei, J., Yan, S.: Infinitely many solutions for the Schrödinger equations in \({\mathbb{R}}^N\) with critical growth. J. Differ. Equ. 252, 2425–2447 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, Z., Zou, W.: Positive least energy solutions and phase seperation for coupled Schrödinger equations with critical exponent. Arch. Ration. Mech. Anal. 205, 515–551 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen, Z., Zou, W.: Positive least energy solutions and phase separation for coupled Schrödinger equations with critical exponent: higher dimensional case. Calc. Var. Partial Differ. Equ. 52, 423–467 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen, Z., Zou, W.: Existence and symmetry of positive ground states for a doubly critical Schrödinger system. Trans. Am. Math. Soc. 367, 3599–3646 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dancer, E.: On the influence of domain shape on the existence of large solutions of some superlinear problem. Math. Ann. 285, 647–669 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dancer, E., Yan, S.: Multibump solutions for an elliptic problem in expanding domains. Commun. Partial Differ. Equ. 27, 23–55 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. He, H., Yang, J.: Positive solutions for critical elliptic systems in non-contractible domains. Commun. Pure Appl. Anal. 5, 1109–1122 (2008)

  19. Li, G., Yan, S., Yang, J.: An elliptic problem with critical growth in domains with shrinking holes. J. Differ. Equ. 198, 275–300 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lin, H.: Three positive solutions of semilinear elliptic equations in the half space with a hole. J. Differ. Equ. 230, 614–633 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lin, T., Wei, J.: Ground state of \(N \) coupled nonlinear Schrödinger equations in \( R^n\), \(n\le 3\). Commun. Math. Phys. 255, 629–653 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Pierotti, D., Terracini, S.: On a Neumann problem with critical exponent and critical nonlinearity on the boundary. Commun. Partial Differ. Equ. 20, 1155–1187 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  23. Peng, S., Wang, Z.: Segregated and synchronized vector solutions for nonlinear Schrödinger systems. Arch. Ration. Mech. Anal. 208, 305–339 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Struwe, M.: A global compactness result for elliptic boundary value problems involving limiting nonlinearities. Math. Z. 187, 511–517 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  25. Swanson, C.: The best Sobolev constant. Applic. Anal. 47, 227–239 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  26. Talenti, G.: Best constant in Sobolev inequality. Ann. Mat. Pure Appl. 110, 353–372 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  27. Tarantello, G.: On nonhomogeneous elliptic equations involving critical Sobolev exponent. Ann. Inst. H. Poincare 9, 281–304 (1992)

    MathSciNet  MATH  Google Scholar 

  28. Wei, J., Yan, S.: Infinitely many positive solutions for the nonlinear Schrödinger equations in \({\mathbb{R}}^N\). Calc. Var. Partial Differ. Equ. 37, 423–439 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the referee’s thoughtful reading of details of the paper and valuable comments. S. Peng was partially supported by NSFC-11571130 and the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT13006). Z.-Q. Wang was partially supported by NSFC-11271201.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Qiang Wang.

Additional information

Communicated by C. S. Lin.

Appendix: Some technical calculations

Appendix: Some technical calculations

Proof of (ii)–(iv) of Lemma 2.2

By simple calculation, we have

$$\begin{aligned} f'(\tau )=\frac{2\tau (2^*+\alpha \tau ^\beta -\beta \tau ^{\beta -2}-2^*\tau ^{2^*-2})}{2^*(1+\tau ^\beta +\tau ^{2^*})^{\frac{2}{2^*}+1}}=\frac{2\tau }{2^*(1+\tau ^\beta +\tau ^{2^*})^{\frac{2}{2^*}+1}}g(\tau ). \end{aligned}$$

and

$$\begin{aligned} g'(\tau )=\tau ^{\beta -3}h(\tau ), \end{aligned}$$

where

$$\begin{aligned} h(\tau ):=\alpha \beta \tau ^2-2^*(2^*-2)\tau ^\alpha -\beta (\beta -2). \end{aligned}$$

If \(1<\beta<2, 1<\alpha <2\), then \(N>4\). Without loss of generality, we assume \(\alpha \ge \beta \). Directly calculation says that \(h(\tau )\) attains its minimum at \(\tau _1=\Bigr (\frac{2^*(2^*-2)}{2\beta }\Bigr )^{\frac{1}{2-\alpha }}\) and

$$\begin{aligned} h(\tau _1)=\beta (2-\beta )-\frac{2^*(2^*-2)(2-\alpha )}{2}\Bigr (\frac{2^*(2^*-2)}{2\beta }\Bigr )^{\frac{\alpha }{2-\alpha }}. \end{aligned}$$

So if \(\beta (2-\beta )\ge \frac{2^*(2^*-2)(2-\alpha )}{2}\Big (\frac{2^*(2^*-2)}{2\beta }\Big )^{\frac{\alpha }{2-\alpha }}\), then \(g'(\tau )\ge 0.\) Thus \(\tau _{min}\) is unique and \(f(\tau _{min})<1\).

If \(N\ge 8\), then \(2^*=2+\frac{4}{N-2}\le \frac{8}{3}\) and \(1<\alpha<\frac{5}{3}, 1<\beta \le \frac{4}{3}\). Thus

$$\begin{aligned} \frac{2^*(2^*-2)(2-\alpha )}{2}\Big (\frac{2^*(2^*-2)}{2\beta }\Big )^{\frac{\alpha }{2-\alpha }} \le \frac{8(2-\alpha )}{9}\Big (\frac{8}{9\beta }\Big )^{\frac{\alpha }{2-\alpha }}<\Big (\frac{8}{9}\Big )^2 \end{aligned}$$

and

$$\begin{aligned} \beta (2-\beta )\ge \frac{4}{3}\Big (2-\frac{4}{3}\Big )=\frac{8}{9}. \end{aligned}$$

So there exists a unique \(\tau >0\) satisfying (2.1) and \(\tau =\tau _{min},f(\tau _{min})<1\).

If \(N=7\), then \(2^*=\frac{14}{5}\) and \(h(\tau )\) attains its minimum at \(\tau _1=\big (\frac{28}{25\beta }\big )^{\frac{1}{2-\alpha }}\). Now, we discuss in the following case:

Case (i) \(1<\beta <\frac{28}{25}\).

In this case, \(\frac{42}{25}<\alpha <\frac{9}{5}\). Now, we claim that if \(\tau >\tau _1\), then \(g(\tau )>0.\)

Indeed,

$$\begin{aligned} \displaystyle g(\tau )= & {} 2^*-\beta \tau ^{\beta -2}+(\alpha \tau ^\beta -2^*\tau ^{2^*-2})\\\ge & {} \displaystyle 2^*-\beta \tau ^{\beta -2}+\min _{\tau>0}(\alpha \tau ^\beta -2^*\tau ^{2^*-2})\\= & {} \displaystyle 2^*-\beta \tau ^{\beta -2}-\frac{\alpha (2-\alpha )}{2^*-2}\left( \frac{2^*(2^*-2)}{\alpha \beta }\right) ^{\frac{\beta }{2-\alpha }}\\>&2^*-\beta \tau _1^{\beta -2}-\frac{\alpha (2-\alpha )}{2^*-2}\left( \frac{2^*(2^*-2)}{\alpha \beta }\right) ^{\frac{\beta }{2-\alpha }}\\= & {} \frac{14}{5}-\beta \left( \frac{25}{28}\beta \right) ^{\frac{2-\beta }{2-\alpha }}-\frac{5}{4} \alpha (2-\alpha )\left( \frac{56}{25\alpha \beta }\right) ^{\frac{\beta }{2-\alpha }}\\\ge & {} \frac{14}{5}-\beta -\frac{5}{4} \alpha (2-\alpha )\left( \frac{56}{25\alpha \beta }\right) ^{\frac{\beta }{2-\alpha }}\\> & {} \frac{42}{25}-\frac{5}{4}\alpha (2-\alpha )\left( \frac{56}{25\alpha \beta }\right) ^5, \end{aligned}$$

where we have used the fact

$$\begin{aligned} \frac{2-\beta }{2-\alpha }>1,\quad \frac{\beta }{2-\alpha }<5. \end{aligned}$$

Consider \(M(\alpha ):=\displaystyle \alpha (2-\alpha )\left( \frac{1}{\alpha \beta }\right) ^5\) in \(\left( \frac{42}{25},\frac{9}{5}\right) \). We find

$$\begin{aligned} \displaystyle M'(\alpha )= & {} -\alpha ^{-4}\beta ^{-5}-4(2-\alpha )\alpha ^{-5}\beta ^{-5}+5(2-\alpha )\alpha ^{-4}\beta ^{-6}\\= & {} \displaystyle \alpha ^{-5}\beta ^{-6}[-\alpha \beta -4(2-\alpha )\beta +5\alpha (2-\alpha )]\\= & {} \displaystyle \alpha ^{-5}\beta ^{-6}\left( -8\alpha ^2+\frac{132}{5}\alpha -\frac{112}{5}\right) \\\le & {} \displaystyle \left( \frac{42}{25}\right) ^{-5}\left( \frac{28}{25}\right) ^{-6}\left[ -8\left( \frac{42}{25}\right) ^2+\frac{132}{5}\left( \frac{42}{25}\right) -\frac{112}{5}\right] \\< & {} 0, \end{aligned}$$

which means that \(M(\alpha )\) is decreasing in \(\left( \frac{42}{25},\frac{9}{5}\right) \).

Hence,

$$\begin{aligned} \displaystyle g(\tau ) \ge \frac{42}{25}-\frac{5}{4}\left( \frac{56}{25}\right) ^5M\left( \frac{42}{25}\right) =\frac{42}{25}-\frac{84}{125}\left( \frac{25}{21}\right) ^5>0, \quad \forall \quad \tau >\tau _1. \end{aligned}$$

Since \(h(\tau _1)<0\) and \(g(0)=-\infty \), we conclude that there exists a unique \(\tau >0\) satisfying (2.1) and \(\tau =\tau _{min}\), \(f(\tau _{min})<1.\)

Case (ii) \(\frac{28}{25}\le \beta \le \frac{7}{5}.\)

In this case, \(\frac{7}{5}\le \alpha \le \frac{42}{25}.\) Now, we claim that

$$\begin{aligned} \beta (2-\beta )\ge \frac{2^*(2^*-2)(2-\alpha )}{2}\left( \frac{2^*(2^*-2)}{2\beta }\right) ^{\frac{\alpha }{2-\alpha }}. \end{aligned}$$

In fact,

$$\begin{aligned} \beta (2-\beta )\ge \frac{7}{5}\left( 2-\frac{7}{5}\right) =\frac{21}{25}. \end{aligned}$$

Moreover,

$$\begin{aligned}&\displaystyle \frac{2^*(2^*-2)(2-\alpha )}{2}\left( \frac{2^*(2^*-2)}{2\beta }\right) ^{\frac{\alpha }{2-\alpha }}\\= & {} \displaystyle \frac{28}{25}(2-\alpha )\left( \frac{28}{25\beta }\right) ^{\frac{\alpha }{2-\alpha }} \le \displaystyle \frac{28}{25}(2-\alpha )\\\le & {} \frac{28}{25}\left( 2-\frac{7}{5}\right) =\frac{84}{125}.\\ \end{aligned}$$

Then \(h(\tau _1)>0\) and \(g'(\tau )>0\). Hence there exists a unique \(\tau >0\) satisfying (2.1) and \(\tau =\tau _{min}\), \(f(\tau _{min})<1.\)

If \(1<\beta <2,\alpha >2\), then \(N=3,4,5\). If \(1<\beta <2,\alpha =2\), then \(N=5\).

In these cases, \(h(\tau )\) has a unique zero point \(\tau _0>0\), such that \(h(\tau )>0,\,\forall \,\tau \in (0,\tau _0)\), \(h(\tau )<0,\,\forall \, \tau \in (\tau _0,+\infty )\). Notice that \(f(0)=1\) and \(f(\tau )\rightarrow 1\) as \(\tau \rightarrow +\infty \), we see that the graphs of \(h(\tau ),g(\tau ),f(\tau )\) are as follows.

figure a

From the above graphs, we conclude that there are exactly \(0<\tau _1<\tau _2<+\infty \) satisfying (2.1) and attaining the minimum and the maximum of \(f(\tau )\) respectively, \(f(\tau _1)<1,f(\tau _2)>1.\)

If \(\beta =2\), then \(N=3,4,5\). By the proof of part (i) of Lemma 2.2, we can easily obtain (iii).

If \(\beta >2\), then \(N=3,4,5\). When \(\beta >2,N=4,5\) or \(4<\beta <5,N=3\), we have \(1<\alpha <2\). This case can be reduced to the case \(1<\beta <2,\,\alpha >2\) by the symmetry of the system.

Now we consider the case \(2\le \alpha < 4,\) and \(2<\beta \le 4\). In this case, \(N=3\).

If \(2\sqrt{10}-4\le \beta <4,N=3\). By simple calculation, we can obtain that \(h(\tau )\) has a unique maximum point \(\tau _2=(\frac{\beta }{12})^{\frac{1}{\alpha -2}}\) and

$$\begin{aligned} h(\tau _2)= & {} \beta (4-\beta )\left( \frac{\beta }{12}\right) ^{\frac{2}{\alpha -2}}-\beta (\beta -2)\\< & {} \beta (4-\beta )\frac{\beta }{12}-\beta (\beta -2)\\= & {} \displaystyle \frac{\beta }{12}[-(\beta +4)^2+40]\\\le & {} 0. \end{aligned}$$

So there exists a unique \(\tau >0\) satisfying (2.1) and attains the maximum of \(f(\tau )\), \(f(\tau )>1\).

If \(2<\beta <2\sqrt{10}-4,N=3\), then \(\beta<3<\alpha <4\) and \(h(\tau _2)>0\). If \(\tau<\tau _2=(\frac{\beta }{12})^{\frac{1}{\alpha -2}}<1\), then

$$\begin{aligned} g(\tau )= & {} 6+\tau ^{\beta -2}(\alpha \tau ^2-\beta )-6\tau ^4\\>&6-\beta \tau ^{\beta -2}-6\tau ^4\\>&6-\beta \left( \frac{\beta }{12}\right) ^{\frac{\beta -2}{\alpha -2}}-6\left( \frac{\beta }{12}\right) ^{\frac{4}{\alpha -2}}\\>&3-6\left( \frac{\beta }{12}\right) ^{\frac{4}{\alpha -2}}>3-6\left( \frac{\beta }{12}\right) ^2\\> & {} 0. \end{aligned}$$

Thus there exists a unique \(\tau >0\) satisfying (2.1) and attaining the maximum of \(f(\tau )\), \(f(\tau )>1\).

If \(\beta =4\) and \(N=3\), then \(\alpha =2\) and \(h(\tau )=-16\tau ^2-8<0\). So \(g'(\tau )<0\). By the graph of \(f(\tau )\), then there exists a unique \(\tau >0\) satisfying (2.1) and attaining the maximum \(f(\tau )>1\).\(\square \)

Lemma 4.1

Suppose \(\tau >0\) satisfies

$$\begin{aligned} g(\tau ):=2^*+\alpha \tau ^\beta -\beta \tau ^{\beta -2}-2^*\tau ^{2^*-2}=0. \end{aligned}$$

then

$$\begin{aligned} g_1(\tau ):=\frac{2^*(\beta +\alpha \tau ^{2^*-2})}{2^*+\alpha \tau ^\beta }-1\ne 1. \end{aligned}$$

Proof

Arguing by contradiction, we assume that \(g_1(\tau )=1\). Then we have

$$\begin{aligned} \displaystyle 2^*\tau ^{2^*-2}-2\tau ^\beta =\frac{2^*(2-\beta )}{\alpha }. \end{aligned}$$
(4.1)

Meanwhile, \(\tau \) satisfies

$$\begin{aligned} \displaystyle 2^*+\alpha \tau ^\beta -\beta \tau ^{\beta -2}-2^*\tau ^{2^*-2}=0. \end{aligned}$$
(4.2)

By (4.1), we know that if \(\beta \ne 2\), then \(\tau \ne 0\) i.e. \(\tau >0\).

We will proceed in the following 5 cases.

Case 1 \(\beta >2,\alpha \ge 2\).

In this case, \(N=3,2^*=6\). If \(\alpha =2\), then \(\beta =4\). By direct calculation, (4.1) cannot hold. Thus \(g_1(\tau )\ne 1\). If \(\alpha>2, \beta >2\), by (4.1), we have \(2^*\tau ^{2^*-2}<2\tau ^\beta \), thus \(\tau<(\frac{2}{2^*})^{\frac{1}{\alpha -2}}<1.\) Then

$$\begin{aligned}&\displaystyle 2^*+\alpha \tau ^\beta -\beta \tau ^{\beta -2}-2^*\tau ^{2^*-2}\\&\quad>\displaystyle 2^*+\alpha \tau ^\beta -\beta \tau ^{\beta -2}-2\tau ^\beta \\&\quad =\displaystyle 2^*+(\alpha -2) \tau ^\beta -\beta \tau ^{\beta -2}\\&\quad> 2^*-\beta \tau ^{\beta -2}>2^*-\beta =\alpha >0. \end{aligned}$$

This is a contradiction with (4.2). Thus we have \(g_1(\tau )\ne 1.\)

Case 2 \(\beta >2,1<\alpha <2\).

In this case, \(2^*>3\) and \(N=3,4,5.\) Since \(\beta >2\), by (4.1), we have \(2^*\tau ^{2^*-2}<2\tau ^\beta \). Then \(\tau>(\frac{2}{2^*})^{\frac{1}{\alpha -2}}>1.\)

Set \(m(\tau ):=2^*+\alpha \tau ^\beta -\beta \tau ^{\beta -2}-2^*\tau ^{2^*-2}\). By (4.1), we have

$$\begin{aligned} m(\tau )=\frac{2^*(2^*-2)}{\alpha }-(2-\alpha )\tau ^\beta -\beta \tau ^{\beta -2}. \end{aligned}$$

Since \(m(\tau )\) is a decreasing function of \(\tau \), \(m(\tau )<m\left( \left( \frac{2}{2^*}\right) ^{\frac{1}{\alpha -2}}\right) .\) Set

$$\begin{aligned} H(\alpha ,\beta ):=m\left( \left( \frac{2}{2^*}\right) ^{\frac{1}{\alpha -2}}\right) =\frac{2^*(2^*-2)}{\alpha }- (2-\alpha )\left( \frac{2^*}{2}\right) ^{\frac{\beta }{2-\alpha }}-\beta \left( \frac{2^*}{2}\right) ^{\frac{\beta -2}{2-\alpha }}. \end{aligned}$$

Next, we prove that \(H<0.\)

In fact, if \(N=3\), then \(2^*=6\) and \(1<\alpha<2,4<\beta <5.\) Since \(\displaystyle \frac{\beta -2}{2-\alpha }>2\),

$$\begin{aligned} H(\alpha ,\beta )= & {} \frac{24}{\alpha }-(2-\alpha )3^{\frac{\beta }{2-\alpha }}-\beta 3^{\frac{\beta -2}{2-\alpha }}\\<&\displaystyle 24-9\beta<-12<0. \end{aligned}$$

If \(N=4\), then \(2^*=4\) and \(1<\alpha<2,2<\beta <3.\) Since \(\displaystyle \frac{\beta -2}{2-\alpha }=1\) and \(\displaystyle \frac{\beta }{2-\alpha }>3\),

$$\begin{aligned} H(\alpha ,\beta )= & {} \frac{8}{\alpha }-(2-\alpha )2^{\frac{\beta }{2-\alpha }}-\beta 2^{\frac{\beta -2}{2-\alpha }}\\<&\displaystyle \frac{8}{\alpha }-8(2-\alpha )-2\beta =\frac{8}{\alpha }+10\alpha -24\\< & {} 4+10\times 2-24=0, \end{aligned}$$

where we have used the fact that \(M(\alpha ):=\displaystyle \frac{8}{\alpha }+10\alpha \) is increasing in (1, 2).

If \(N=5\), then \(2^*=\frac{10}{3}\) and \(1<\alpha<\frac{4}{3},2<\beta <\frac{7}{3}.\) Since \(2<\alpha \beta <\frac{28}{9}\) and \(\frac{\beta }{2-\alpha }>2\),

$$\begin{aligned} H(\alpha ,\beta )= & {} \frac{40}{9\alpha }-(2-\alpha )\left( \frac{5}{3}\right) ^{\frac{\beta }{2-\alpha }}-\beta \left( \frac{5}{3}\right) ^{\frac{\beta -2}{2-\alpha }}\\<&\displaystyle \frac{40}{9\alpha }-(2-\alpha )\left( \frac{5}{3}\right) ^2-\beta =\frac{40-9\alpha \beta }{9\alpha }+\frac{25}{9}\alpha -\frac{50}{9}\\<&\displaystyle \frac{22}{9\alpha }+\frac{25}{9}\alpha -\frac{50}{9}<\displaystyle \frac{22}{9\times \frac{4}{3}}+\frac{25}{9}\times \frac{4}{3}-\frac{50}{9}\\<&\frac{11}{6}-\frac{50}{27}<0, \end{aligned}$$

where we have used the fact that \(M_1(\alpha ):=\frac{22}{9\alpha }+\frac{25}{9}\alpha \) is increasing in \((1,\frac{4}{3})\). Since \(H<0\), \(m(\tau )<0\). This is a contradiction with (4.2). Thus \(g_1(\tau )\ne 1\).

Case 3 \(\alpha \ge 2, 1<\beta <2\).

In this case, \(2^*>3\), then \(N=3,4,5\).

If \(\alpha =2,1<\beta <2\), then by direct calculation, we have that if \(g_1(\tau )=1\), then \(\tau =\left( \frac{2^*(2-\beta )}{2\beta }\right) ^{\frac{1}{\beta }}\).

On the other hand, if \(m(\tau )=0\), then \(\tau ^{\beta -2}=\frac{2^*}{2}\). So

$$\begin{aligned} \left( \frac{2^*}{2}\right) ^{\frac{\beta }{2-\beta }}<\left( \frac{2^*}{2}\right) ^{\frac{2}{2-\beta }}=\frac{\beta }{2-\beta }, \end{aligned}$$

which is impossible and hence \(g_1(\tau )\ne 1\).

The case \(\alpha >2, 1<\beta <2\) can reduced to the case \(\beta >2, 1<\alpha <2\) by the symmetry of the system.

Case 4 \(1<\alpha <2\), \(1<\beta <2\).

Without loss of generality, we assume that \(1<\beta \le \alpha <2\). Since \(1<\alpha <2\) and \(1<\beta <2\), \(N>4\). By the graph of \(m(\tau )\), we have that \(m(\tau )\) attains its maximum at \(\tau _{max}=\left( \frac{2-\beta }{2-\alpha }\right) ^{\frac{1}{2}}\) and \(m(\tau _{max})=\frac{2^*(2^*-2)}{\alpha }-2\left( \frac{2-\beta }{2-\alpha }\right) ^{\frac{\beta }{2}-1}\). So when \(\left( \frac{2-\beta }{2-\alpha }\right) ^{\frac{2-\beta }{2}}<\frac{2\alpha }{2^*(2^*-2)}\), we have \(m(\tau )<0\).

Now, we claim that if \(N\ge 9\), then

$$\begin{aligned} \left( \frac{2-\beta }{2-\alpha }\right) ^{\frac{2-\beta }{2}}<\frac{2\alpha }{2^*(2^*-2)}. \end{aligned}$$
(4.3)

Indeed, by \(2>\alpha \ge \beta >1\), then \(2^*\le 2\alpha <2(2^*-1)\). When \(N\ge 9\), we have \(2^*\le \frac{18}{7}\). Thus

$$\begin{aligned} \left( \frac{2-\beta }{2-\alpha }\right) ^{\frac{2-\beta }{2}}\le \left( \frac{2-\beta }{2-\alpha }\right) ^{\frac{1}{2}}<\left( \frac{1}{3-2^*}\right) ^{\frac{1}{2}} <\left( \frac{7}{3}\right) ^{\frac{1}{2}}. \end{aligned}$$

and

$$\begin{aligned} \frac{2\alpha }{2^*(2^*-2)}\ge \frac{1}{2^*-2}\ge \frac{7}{4}>\left( \frac{7}{3}\right) ^{\frac{1}{2}}. \end{aligned}$$

So we have (4.3). Then \(m(\tau )<0\). This is a contradiction with (4.2). So we have \(g_1(\tau )\ne 1\).

When \(N=8\), we have \(2^*=\frac{8}{3}\) and \(\frac{4}{3}\le \alpha<\frac{5}{3}, 1<\beta \le \frac{4}{3}\). Now, we discuss in the following case:

Case (i) \(\frac{4}{3}\le \alpha <\frac{62}{39}\).

In this case, we have that

$$\begin{aligned} \left( \frac{2-\beta }{2-\alpha }\right) ^{\frac{2-\beta }{2}}\le \left( \frac{2-\beta }{2-\alpha }\right) ^{\frac{1}{2}}=\left( \frac{4-2^*}{2-\alpha }-1\right) ^{\frac{1}{2}}<\frac{3}{2}. \end{aligned}$$

and

$$\begin{aligned} \frac{2\alpha }{2^*(2^*-2)}=\frac{9\alpha }{8}\ge \frac{3}{2}. \end{aligned}$$

Thus (4.3) holds. Then \(m(\tau )<0\). This is a contradiction with (4.2). So we have \(g_1(\tau )\ne 1\).

Case (ii) \(\frac{62}{39}\le \alpha <\frac{5}{3}\).

In this case \(1<\beta \le \frac{14}{13}\). Now, we claim that for any \(\tau >0\),

$$\begin{aligned} G(\tau ):=2^*\tau ^{2^*-2}-2\tau ^\beta -\frac{2^*(2-\beta )}{\alpha }<0. \end{aligned}$$

In fact, by directly calculation, we know that \(G(\tau )\) attains its maximum at \(\tau _{max}=\left( \frac{8}{9\beta }\right) ^{\frac{1}{2-\alpha }}<1.\)

$$\begin{aligned} G(\tau _{max})= & {} \displaystyle 2^*\tau _{max}^{2^*-2}-2\tau _{max}^\beta -\frac{2^*(2-\beta )}{\alpha }\\= & {} \displaystyle \left( \frac{8}{9\beta }\right) ^{\frac{\beta }{2-\alpha }}(3\beta -2)-\frac{8}{3}\frac{2-\beta }{\alpha }\\<&3\beta -2-\frac{8}{3}\frac{2-\beta }{\alpha }=3\beta -2-\frac{8}{3}\left( 1-\frac{2}{3\alpha }\right) \\= & {} \displaystyle \frac{10}{3}+\frac{16}{9\alpha }-3\alpha \\\le & {} \frac{10}{3}-\frac{62}{13}+\frac{104}{93}<0. \end{aligned}$$

Thus (4.1) cannot hold. Combining the above discussion, we obtain \(g_1(\tau )\ne 1\) if \(N=8\).

When \(N=7\), we have \(2^*=\frac{14}{5}\) and \(\frac{7}{5}\le \alpha<\frac{9}{5}, 1<\beta \le \frac{7}{5}\). Now, we discuss in the following case:

Case (i) \(\frac{7}{5}\le \alpha <\frac{314}{205}\).

In this case, \(\frac{52}{41}< \beta \le \frac{7}{5}\) and

$$\begin{aligned} \left( \frac{2-\beta }{2-\alpha }\right) ^{\frac{2-\beta }{2}}<\left( \frac{2-\beta }{2-\alpha }\right) ^{\frac{1}{2}}=\left( \frac{\frac{6}{5}}{2-\alpha }-1\right) ^{\frac{1}{2}}\le \frac{5}{4}. \end{aligned}$$

and

$$\begin{aligned} \frac{2\alpha }{2^*(2^*-2)}=\frac{25\alpha }{28}\ge \frac{5}{4}. \end{aligned}$$

Thus (4.3) holds. Then \(m(\tau )<0\). This is a contradiction with (4.2). So we have \(g_1(\tau )\ne 1\).

Case (ii) \(\frac{314}{205}\le \alpha <\frac{9}{5}\).

In this case, \(1< \beta \le \frac{52}{41}\). If \(\frac{28}{25}\le \beta <\frac{52}{41}\), by simple calculation, we have \(G(\tau )\) attains its maximum at \(\tau _{max}=\big (\frac{28}{25\beta }\big )^{\frac{1}{2-\alpha }}\le 1\) and

$$\begin{aligned} T(\beta ):=G(\tau _{max}) =\left( \frac{5}{2}\beta -2\right) \left( \frac{28}{25\beta }\right) ^{\frac{\beta }{2-\alpha }}+\frac{56}{25\alpha }-\frac{14}{5}. \end{aligned}$$

Then

$$\begin{aligned} T'(\beta )=-\displaystyle \frac{10}{5\beta -4}\left( \frac{28}{25\beta }\right) ^{\frac{5\beta }{5\beta -4}}\ln \left( \frac{28}{25\beta }\right) +\frac{56\times 25}{(70-25\beta )^2}. \end{aligned}$$

Therefore if \(\frac{28}{25}\le \beta <\frac{52}{41}\), then \(T'(\beta )>0\) and so

$$\begin{aligned} T(\beta )\le T\left( \frac{52}{41}\right) <0. \end{aligned}$$

Thus (4.1) cannot hold. Then \(g_1(\tau )\ne 1\). When \(1<\beta <\frac{28}{25}\). By the proof of Lemma 2.2 (ii) for \(N=7\), we have that there has a unique \(\tau _0\) such that \(g(\tau )=0\) i.e. (4.1) holds and \(0<\tau _0<1\) by the graph of \(g(\tau )\). But, when \(0<\tau <1\), \(G(\tau )\le G(1)<0\). Thus (4.1) and (4.2) cannot hold simultaneously. Combining the above discussion, if \(N=7\), then \(g_1(\tau )\ne 1\).

Case 5 \(\beta =2.\)

If \(\beta =2\) and \(N=3\), by the proof of Lemma 2.2 (iii), we have a unique \(\tau >0\) such that \(g(\tau )=0\), that is \(4(1+\tau ^2)=6\tau ^4\). Then it is easy to verify that (4.1) cannot holds. Thus \(g_1(\tau )\ne 1\).

If \(\beta =2\) and \(N=4\), by the proof of Lemma 2.2 (iii), we have a unique \(\tau =1\) such that \(g(\tau )=0\). Then (4.1) cannot holds. Thus \(g_1(\tau )\ne 1\).

If \(\beta =2\) and \(N=5\), by Lemma 2.2 (iii), we have \(\tau >0\). Then by a similar argument as Case 2, we have \(g_1(\tau )\ne 1\).\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, S., Peng, Yf. & Wang, ZQ. On elliptic systems with Sobolev critical growth. Calc. Var. 55, 142 (2016). https://doi.org/10.1007/s00526-016-1091-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-016-1091-7

Mathematics Subject Classification

Navigation