Skip to main content
Log in

A fuzzy compromise approach for solving multi-objective stratified sampling design

  • S. I : Hybridization of Neural Computing with Nature Inspired Algorithms
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In this paper, we established a framework for finding out the optimal allocation in the multivariate stratified sample using the fuzzy compromise method. The problem of multivariate stratified sample is formulated as an all integer nonlinear programming problem, and a solution is obtained by using the criterion of “Minimizing the sum of the squares of coefficient of variation for different characteristics.” There is also a quantitative illustration being carried out to explain the statistical nature of the approaches and solved through the LINGO program. We have also studied different techniques for comparison.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sukhatme PV, Sukhatme BV, Sukhatme S, Asok C (1984) Sampling theory of surveys with applications, 3rd edn. Iowa State University Press, Iowa and Indian Society of Agricultural Statistics, Ames, New Delhi

    MATH  Google Scholar 

  2. Holmberg A (2002) A multi parameter perspective on the choice of sampling design in surveys. Stat Transit 5:969–994

    Google Scholar 

  3. Díaz-García JA, Cortez LU (2006) Optimum allocation in multivariate stratified sampling: multi-objective programming, Comunicación Técnica No. I-06-07/28-03-2006 (PE/CIMAT)

  4. Khowaja S, Ghufran S, Ahsan MJ (2011) Estimation of population means in multivariate stratified random sampling. Commun Stat Simul Comput 40:710–718

    Article  MathSciNet  Google Scholar 

  5. Khowaja S, Ghufran S, Ahsan MJ (2012) Multi-objective optimization for optimum allocation in multivariate stratified sampling with quadratic cost. J Stat Comput Simul 82(12):1789–1798. https://doi.org/10.1080/00949655.2011.595716

    Article  MathSciNet  MATH  Google Scholar 

  6. Ghufran S, Khowaja S, Ahsan MJ (2011) A Multiple response stratified sampling design with travel cost. S Pac J Nat Appl Sci 29:31–39. https://doi.org/10.1071/SP11007

    Article  MATH  Google Scholar 

  7. Ghufran S, Khowaja S, Ahsan MJ (2012) Optimum multivariate stratified sampling designs with travel cost: a multiobjective integer nonlinear programming approach. Commun Stat Simul Comput 41(5):598–610. https://doi.org/10.1080/03610918.2011.598995

    Article  MathSciNet  MATH  Google Scholar 

  8. Ghufran S, Khowaja S, Ahsan MJ (2013) Optimum allocation in two-stage stratified randomized response model. J Math Model Algorithms Oper Res 12:383–392. https://doi.org/10.1007/s10852-013-9217-9

    Article  MathSciNet  MATH  Google Scholar 

  9. Varshney R, Najmussehar Ahsan MJ (2012) An optimum multivariate stratified double sampling design in presence of non-response. Optim Lett 6(5):993–1008. https://doi.org/10.1007/s11590-011-0329-8

    Article  MathSciNet  MATH  Google Scholar 

  10. Varshney R, Khan MGM, Fatima U, Ahsan MJ (2015) Integer compromise allocation in multivariate stratified surveys. Ann Oper Res 226(1):659–668. https://doi.org/10.1007/s10479-014-1734-z

    Article  MathSciNet  MATH  Google Scholar 

  11. Varshney R, Gupta S, Ali I (2017) An optimum multivariate-multi-objective stratified sampling design: fuzzy programming approach. Pak J Stat Oper Res 13(4):829–855. https://doi.org/10.18187/pjsor.v13i4.1834

    Article  MathSciNet  Google Scholar 

  12. Varshney R, Mradula (2019) Optimum allocation in multivariate stratified sampling design in the presence of nonresponse with Gamma cost function. J Stat Comput Simul 89(13):2454–2467. https://doi.org/10.1080/00949655.2019.1620747

    Article  MathSciNet  MATH  Google Scholar 

  13. Shafiullah MFK, Ali I (2014) Fuzzy geometric programming in multivariate stratified sample surveys in presence of non-response with quadratic cost function. Am J Oper Res 4:173–188. https://doi.org/10.4236/ajor.2014.43017

    Article  Google Scholar 

  14. Muhammad YS, Shabir J, Hussain I, Abd-el Moemen M (2015) Multiobjective compromise allocation in multivariate stratified sampling using extended lexicographic goal programming with Gamma cost function. J Math Model Algorithms Oper Res 14(3):255–265. https://doi.org/10.1007/s10852-014-9270-z

    Article  MathSciNet  MATH  Google Scholar 

  15. Raghav YS, Khan MF, Khalil S (2017) Sample allocation problem in multiobjective multivariate stratified sample survey under two stage randomized response model. J Math Comput Sci 6:1074–1089. https://doi.org/10.28919/jmcs/3376

    Article  Google Scholar 

  16. Ansari AH, Varshney R, Ahsan MJ (2018) Compromise mixed allocation in multivariate stratified sampling using dynamic programming technique. J Adv Stat 3(4):71–79. https://doi.org/10.22606/jas.2018.34003

    Article  Google Scholar 

  17. Haq A, Ali I, Varshney R (2020) Compromise allocation problem in multivariate stratified sampling with flexible fuzzy goals. J Stat Comput Simul. https://doi.org/10.1080/00949655.2020.1734808

    Article  MathSciNet  Google Scholar 

  18. Mradula Yadav SK, Varshney R, Dube M (2019) Efficient estimation of population mean under stratified random sampling with linear cost function. Commun Stat Simul Comput. https://doi.org/10.1080/03610918.2019.1643479

    Article  MATH  Google Scholar 

  19. Zimmermann H-J (1978) Fuzzy programming and linear programming with several objective functions. Fuzzy Sets Syst 1:45–55. https://doi.org/10.1016/0165-0114(78)90031-3

    Article  MathSciNet  MATH  Google Scholar 

  20. Lee ES, Li RJ (1993) Fuzzy multiple objective programming and compromise programming with Pareto optimum. Fuzzy Sets Syst 53(3):275–288. https://doi.org/10.1016/0165-0114(93)90399-3

    Article  MathSciNet  MATH  Google Scholar 

  21. Arqub OA (2017) Adaptation of reproducing kernel algorithm for solving fuzzy Fredholm–Volterra integrodifferential equations. Neural Comput Appl 28(7):1591–1610. https://doi.org/10.1007/s00521-015-2110-x

    Article  Google Scholar 

  22. Arqub OA, Al-Smadi M, Momani S, Hayat T (2017) Application of reproducing kernel algorithm for solving second-order, two-point fuzzy boundary value problems. Soft Comput 21(23):7191–7206. https://doi.org/10.1007/s00500-016-2262-3

    Article  MATH  Google Scholar 

  23. Arqub OA, Mohammed AS, Momani S, Hayat T (2016) Numerical solutions of fuzzy differential equations using reproducing kernel Hilbert space method. Soft Comput 20(8):3283–3302. https://doi.org/10.1007/s00500-015-1707-4

    Article  MATH  Google Scholar 

  24. Ríos S, Ríos Insua S, Ríos Insua MJ (1989) Procesos de Decisión Multicriterio. EUDEMA, Madrid

    MATH  Google Scholar 

  25. Miettinen KM (1999) Non linear multiobjective optimization. Kluwer Academic, Boston

    MATH  Google Scholar 

  26. Steuer RE (1986) Multiple criteria optimization: theory, computation and applications. Wiley, New York

    MATH  Google Scholar 

  27. Ostle B (1954) Statistics in research basic concepts and techniques for research workers, 1st edn. Iowa State College Press, Ames

    MATH  Google Scholar 

  28. Li L, Lai KK (2000) A fuzzy approach to the multiobjective transportation problem. Comput Oper Res 27(1):43–57. https://doi.org/10.1016/S0305-0548(99)00007-6

    Article  MathSciNet  MATH  Google Scholar 

  29. Zionts S (1997) Some thoughts on MCDM: myths and ideas. In: Clímaco J (ed) Multicriteria analysis. Springer, Berlin, pp 602–607

    Chapter  Google Scholar 

  30. Zionts S (1997) Decision making: Some experiences, myths and observations. In: Fandel G, Gal T (eds) Multiple criteria decision making: proceedings of the twelfth international conference, Hagen (Germany). Lecture notes in economics and mathematical systems, vol 448. Springer, Berlin, pp 233–241

    Chapter  Google Scholar 

  31. Rosenthal RE (1985) Princilpes of multiobjective optimization. Decis Sci 16:133–152

    Article  Google Scholar 

  32. Khan MGM, Khan EA, Ahsan MJ (2003) An optimal multivariate stratified sampling design using dynamic programming. Aust N Zeal J Stat 45:107–113. https://doi.org/10.1111/1467-842X.00264

    Article  MATH  Google Scholar 

  33. Haimes YY, Lasdon LS, Wismer DA (1971) On a bicriterion formulation of the problems of integrated system identification and system optimization. IEEE Trans Syst Man Cybern 1:296–297

    MathSciNet  MATH  Google Scholar 

  34. Khuri AI, Cornell JA (1986) Response surface: designs analysis. Marcel Dekker, New York

    Google Scholar 

  35. Kozak M (2006) Multivariate sample allocation: application of random search method. Stat Transit 7(4):889–900

    MathSciNet  Google Scholar 

  36. Kozak M (2006) On sample allocation in multivariate surveys. Commun Stat Simul Comput 35:901–910

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srikant Gupta.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper. As regards the similarity index of our paper, we have to state that most of the papers which have a similarity index of above 1% are authored by one of the co-author of this manuscript Dr. Shazia Ghufran. We feel it is natural to reproduce, with due reference, some of ones own old research work in fresh papers and it does not come in the category of ‘Plagiarism.’

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghufran, S., Gupta, S. & Ahmed, A. A fuzzy compromise approach for solving multi-objective stratified sampling design. Neural Comput & Applic 33, 10829–10840 (2021). https://doi.org/10.1007/s00521-020-05152-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-020-05152-7

Keywords

Navigation