Skip to main content
Log in

On the role of astrocyte analog circuit in neural frequency adaptation

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In the present study, we develop an analog neuromorphic circuit to implement the astrocyte dynamics. The intracellular calcium waves produced by astrocytes are modeled by a simplified dynamical model which considers the main pathways of neuron–astrocyte interactions. Then, a simple CMOS circuit implementation that maps the model on hardware is proposed. It is designed and simulated using HSPICE simulator in 0.35 μm standard CMOS technology. The simulation results illustrate that the proposed astrocyte circuit is a good candidate for applications in neuromorphic devices which implement biologically plausible neural circuits. Finally, the proposed astrocyte analog circuit is used to study neural frequency adaptation. The results of simulations demonstrate that in low frequency range, the astrocyte circuit can have a significant role in the frequency adaptation of the neuronal model. The low power consumption (205 μW) and the compactness of the circuit make it a practical solution for the implementation of dense arrays of spiking neurons and astrocytes in a single chip.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Mead C (1990) Neuromorphic electronic systems. Proc IEEE 78(10):1629–1636

    Article  Google Scholar 

  2. Hashmi A, Nere A, Thomas JJ, Lipasti M (2012) A case for neuromorphic ISAs. ACM SIGPLAN Notices 47(4):145–158

    Article  Google Scholar 

  3. Indiveri G et al (2011) Neuromorphic silicon neuron circuits. Front Neurosci 5(73):1–23

    Google Scholar 

  4. Wijekoon JHB, Dudek P (2007) Spiking and bursting firing patterns of a compact VLSI cortical neuron circuit. In: IEEE international joint conference on neural networks, Orlando, FL, pp 1332–1337

  5. Bartolozzi C, Indiveri G (2007) Synaptic dynamics in analog VLSI. Neural Comput 19(10):2581–2603

    Article  MATH  Google Scholar 

  6. Indiveri G (2002) Neuromorphic bistable VLSI synapses with spike-timing-dependent plasticity. NIPS 15:1091–1098

    Google Scholar 

  7. Serrano-Gotarredona T, Masquelier T, Prodromakis T, Indiveri G, Linares-Barranco B (2013) STDP and STDP variations with memristors for spiking neuromorphic learning systems. Front Neurosci 7(2):1–15

    Google Scholar 

  8. Nazari S, Faez K, Karami E, Amiri M (2014) A digital neurmorphic circuit for a simplified model of astrocyte dynamics. Neurosci Lett 582:21–26

    Article  Google Scholar 

  9. Sridharan D, Millner S, Arthur J, Boahen K (2010) Robust spatial working memory through inhibitory gamma synchrony. In: Conference computational and systems neuroscience, Salt Lake City, UT

  10. Lichtsteiner P, Posch C, Delbruck T (2008) A 128 × 128 120 dB 15 μs latency asynchronous temporal contrast vision sensor. IEEE J Solid State Circuits 43(2):566–576

    Article  Google Scholar 

  11. Andreou AG, Boahen KA (1991) Modeling inner and outer plexiform retinal processing using nonlinear coupled resistive networks. In: Electronic imaging’91, San Jose, CA. International Society for Optics and Photonics, pp 270–281

  12. Chan V, Liu SC, van Schaik A (2007) AER EAR: A matched silicon cochlea pair with address event representation interface. IEEE Trans Circuits Syst I Regul Pap 54(1):48–59

    Article  Google Scholar 

  13. Indiveri G, Chicca E, Douglas R (2006) A VLSI array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity. IEEE Trans Neural Netw 17(1):211–221

    Article  Google Scholar 

  14. Ambroise M, Levi T, Joucla S, Yvert B, Saïghi S (2013) Real-time biomimetic central pattern generators in an FPGA for hybrid experiments. Front Neurosci 7(215):1–11

    Google Scholar 

  15. Nazari S, Faez K, Amiri M, Karami E (2015) A digital implementation of neuron–astrocyte interaction for neuromorphic applications. Neural Netw 66:79–90

    Article  Google Scholar 

  16. Nazari S, Amiri M, Faez K, Amiri M (2015) Multiplier-less digital implementation of neuron–astrocyte signalling on FPGA. Neurocomputing 164:281–292

    Article  Google Scholar 

  17. Ranjbar M, Amiri M (2015) An analog astrocyte-neuron interaction circuit for neuromorphic applications. JCEL 14:694–706

    Google Scholar 

  18. Irizarry-Valle Y, Parker AC, Joshi J (2013) A CMOS neuromorphic approach to emulate neuro-astrocyte interactions. In: The 2013 international joint conference on IEEE neural networks (IJCNN), pp 1–7

  19. Moradi S, Indiveri G (2013) An event-based neural network architecture with an asynchronous programmable synaptic memory Synaptic Memory. IEEE Trans Biomed Circuits Syst 8(1):98–107

    Article  Google Scholar 

  20. Nazari S, Faez K, Amiri M, Karami E (2015) A novel digital implementation of neuron–astrocyte interactions. J Comput Electron 14:227–239

    Article  Google Scholar 

  21. Ranjbar M, Amiri M (2015) Analog implementation of neuron– astrocyte interaction in tripartite synapse. J Comput Electron. doi:10.1007/s10825-015-0727-8

  22. Fellin T, Pascual O, Haydon PG (2006) Astrocytes coordinate synaptic networks: balanced excitation and inhibition. Physiology 21(3):208–215

    Article  Google Scholar 

  23. Amiri M, Bahrami F, Janahmadi M (2012) On the role of astrocytes in epilepsy: a functional modeling approach. Neurosci Res 72(2):172–180

    Article  MATH  Google Scholar 

  24. Amiri M, Bahrami F, Janahmadi M (2012) Modified thalamocortical model: a step towards more understanding of the functional contribution of astrocytes to epilepsy. J Comput Neurosci 33(2):285–299

    Article  MathSciNet  Google Scholar 

  25. Amiri M, Montaseri G, Bahrami F (2013) A phase plane analysis of neuron–astrocyte interactions. Neural Netw 44:157–165

    Article  MATH  Google Scholar 

  26. Barker AJ, Ullian EM (2008) New roles for astrocytes in developing synaptic circuits. Commun Integr Biol 1(2):207–211

    Article  Google Scholar 

  27. Fellin T, Carmignoto G (2004) Neurone to astrocyte signalling in the brain represents a distinct multifunctional unit. J Physiol 559(1):3–15

    Article  Google Scholar 

  28. Wijekoon JH, Dudek P (2012) VLSI circuits implementing computational models of neocortical circuits. J Neurosci Methods 21(1):93–109

    Article  Google Scholar 

  29. Irizarry-Valle Y, Parker AC (2015) An astrocyte neuromorphic circuit that influences neuronal phase synchrony. IEEE Trans Biomed Circuits Syst 9(2):175–187

    Article  Google Scholar 

  30. Piri M, Amiri M, Amiri M (2015) A bio-inspired stimulator to desynchronize epileptic cortical population models: a digital implementation framework. Neural Netw 67:74–83

    Article  Google Scholar 

  31. Nazari S, Amiri M, Faez K, Karami E (2014) A novel digital circuit for astrocyte-inspired stimulator to desynchronize two coupled oscillators. In: IEEE 2014 21th Iranian conference on biomedical engineering (ICBME), pp 80–85

  32. Amiri M, Montaseri G, Bahrami F (2011) On the role of astrocytes in synchronization of two coupled neurons: a mathematical perspective. Biol Cybern 105(2):153–166

    Article  MathSciNet  MATH  Google Scholar 

  33. Amiri M, Hosseinmardi N, Bahrami F, Janahmadi M (2013) Astrocyte-neuron interaction as a mechanism responsible for generation of neural synchrony: a study based on modeling and experiments. J Comput Neurosci 34(3):489–504

    Article  MathSciNet  Google Scholar 

  34. Giugliano M (2009) Calcium waves in astrocyte networks: theory and experiments. Front Neurosci 3(2):160–161

    Article  Google Scholar 

  35. Hertz L, Zielke HR (2004) Astrocytic control of glutamatergic activity: astrocytes as stars of the show. Trends Neurosci 27(12):735–743

    Article  Google Scholar 

  36. Mesejo P, Ibáñez O, Fernández-Blanco E, Cedrón F, Pazos A, Porto-Pazos AB (2015) Artificial neuron–glia networks learning approach based on cooperative coevolution. Int J Neural Syst 25(4):1550012

    Article  Google Scholar 

  37. Halassa MM, Fellin T, Haydon PG (2009) Tripartite synapses: roles for astrocytic purines in the control of synaptic physiology and behavior. Neuropharmacology 57(4):343–346

    Article  Google Scholar 

  38. Haydon PG, Volterra A, Magistretti PJ (2002) The tripartite synapse: glia in synaptic transmission (No. LNDC-BOOK-2010-002). Oxford University Press, Oxford

    Google Scholar 

  39. Joshi J, Zhang J, Wang C, Hsu CC, Parker AC, Zhou C, Ravishankar U (2011) A biomimetic fabricated carbon nanotube synapse for prosthetic applications. In: Life Science Systems and Applications Workshop (LiSSA), pp 139–142

  40. Montaseri G, Yazdanpanah MJ, Amiri M (2011) Astrocyte-inspired controller design for desynchronization of two coupled limit-cycle oscillators. In: Third world congress on IEEE nature and biologically inspired computing (NaBIC), pp 195–200

  41. Postnov DE, Ryazanova LS, Sosnovtseva OV (2007) Functional modeling of neural–glial interaction. Biosystems 89(1):84–91

    Article  Google Scholar 

  42. Postnov DE, Koreshkov RN, Brazhe NA, Brazhe AR, Sosnovtseva OV (2009) Dynamical patterns of calcium signaling in a functional model of neuron–astrocyte networks. J Biol Phys 35(4):425–445

    Article  Google Scholar 

  43. Naud R, Marcille N, Clopath C, Gerstner W (2008) Firing patterns in the adaptive exponential integrate-and-fire model. Biol Cybern 99(4–5):335–347

    Article  MathSciNet  MATH  Google Scholar 

  44. Brette R, Gerstner W (2005) Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. J Neurophysiol 94(5):3637–3642

    Article  Google Scholar 

  45. Amiri M, Bahrami F, Janahmadi M (2012) Functional contributions of astrocytes in synchronization of a neuronal network model. J Theor Biol 292:60–70

    Article  MathSciNet  MATH  Google Scholar 

  46. Amiri M, Bahrami F, Janahmadi M (2011) Functional modeling of astrocytes in epilepsy: a feedback system perspective. Neural Comput Appl 20(8):1131–1139

    Article  Google Scholar 

  47. Newman EA (2003) New roles for astrocytes: regulation of synaptic transmission. Trends Neurosci 26(10):536–542

    Article  Google Scholar 

  48. Silchenko AN, Tass PA (2008) Computational modeling of paroxysmal depolarization shifts in neurons induced by the glutamate release from astrocytes. Biol Cybern 98(1):61–74

    Article  MATH  Google Scholar 

  49. Hamilton NB, Attwell D (2010) Do astrocytes really exocytose neurotransmitters? Nat Rev Neurosci 11(4):227–238

    Article  Google Scholar 

  50. Araque A, Carmignoto G, Haydon PG, Oliet SH, Robitaille R, Volterra A (2014) Gliotransmitters travel in time and space. Neuron 81(4):728–739

    Article  Google Scholar 

  51. Tong X, Ao Y, Faas GC, Nwaobi SE, Xu J, Haustein MD, Khakh BS (2014) Astrocyte Kir4. 1 ion channel deficits contribute to neuronal dysfunction in Huntington’s disease model mice. Nat Neurosci 17(5):694–703

    Article  Google Scholar 

  52. Woo SR, Turnis ME, Goldberg MV, Bankoti J, Selby M, Nirschl CJ, Vignali DA (2012) Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res 72(4):917–927

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmood Amiri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranjbar, M., Amiri, M. On the role of astrocyte analog circuit in neural frequency adaptation. Neural Comput & Applic 28, 1109–1121 (2017). https://doi.org/10.1007/s00521-015-2112-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-015-2112-8

Keywords

Navigation