Skip to main content
Log in

Analog implementation of neuron–astrocyte interaction in tripartite synapse

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Neural synchronization is considered as an important mechanism for information processing. In addition, recent neurophysiological findings approve that astrocytes adjust the synaptic transmission of neural networks. Motivated by these observations, we develop an analog neuromorphic circuit to implement the tripartite synapse. To model the dynamics of the intracellular calcium waves produced by the astrocytes, we utilize a simplified model which considers the key physiological pathways of neuron–astrocyte communication. Next, using an astrocyte analog circuit, a tripartite synapse circuit is constructed by connecting two modified differential pair integrator neurons and one astrocyte circuits. It is designed and simulated using HSPICE simulator in \(0.35\,\upmu \hbox {m}\) standard CMOS technology. The simulation results of the tripartite synapse circuit, demonstrate that astrocyte circuit plays a crucial role in neuronal firing synchronicity from hardware point of view. In this way, astrocyte–neuron collaboration leads to the emergence of synchronous/asynchronous patterns in neural responses. Therefore, it makes possible to have a new circuit in which astrocyte actively contributes in neural information processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Linne, M.L., Jalonen, T.O.: Astrocyte–neuron interactions: from experimental research-based models to translational medicine. Prog. Mol. Biol. Transl. Sci. 123, 191 (2014)

    Article  Google Scholar 

  2. Indiveri, G., et al.: Neuromorphic silicon neuron circuits. Front. Neurosci. 5, 1 (2011)

    Google Scholar 

  3. Bartolozzi, C., Indiveri, G.: Synaptic dynamics in analog VLSI. Neural Comput. 19(10), 2581–2603 (2007)

    Article  MATH  Google Scholar 

  4. Kuga, N., Sasaki, T., Takahara, Y., Matsuki, N., Ikegaya, Y.: Large-scale calcium waves traveling through astrocytic networks in vivo. J. Neurosci. 31(7), 2607–2614 (2011)

    Article  Google Scholar 

  5. Papa, M., De Luca, C., Petta, F., Alberghina, L., Cirillo, G.: Astrocyte-neuron inter play in maladaptive plasticity. Neurosci. Biobehav. Rev. 42, 35–54 (2014)

    Article  Google Scholar 

  6. Dallérac, G., Chever, O., Rouach, N.: How do astrocytes shape synaptic transmission? Insights from electrophysiology. Front. Cell. Neurosci. 7, 159 (2013)

    Article  Google Scholar 

  7. Kanski, R., van Strien, M.E., van Tijn, P., Hol, E.M.: A star is born: new insights into the mechanism of astrogenesis. Cell. Mol. Life Sci. 71(3), 433–447 (2014)

    Article  Google Scholar 

  8. Molofsky, A.V., Krenick, R., Ullian, E., Tsai, H.H., Deneen, B., Richardson, W.D., Barres, B.A., Rowitch, D.H.: Astrocytes and disease: a neurodevelopmental perspective. Genes Dev 26(9), 891–907 (2012)

    Article  Google Scholar 

  9. Min, R., Santello, M., Nevian, T.: The computational power of astrocyte mediated synaptic plasticity. Front. Comput. Neurosci. 6 (2012). doi:10.3389/fncom.2012.00093

  10. Clarke, L.E., Barres, B.A.: Emerging roles of astrocytes in neural circuit development. Nat. Rev. Neurosci. 14(5), 311–321 (2013)

    Article  Google Scholar 

  11. Fellin, T.: Communication between neurons and astrocytes: relevance to the modulation of synaptic and network activity. J. Neurochem. 108(3), 533–544 (2009)

    Article  Google Scholar 

  12. Schafer, D.P., Lehrman, E.K., Kautzman, A.G., Koyama, R., Mardinly, A.R., Yamasaki, R., Ransohoff, R.M., Greenberg, M.E., Barres, B.A., Stevens, B.: Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74(4), 691–705 (2012)

    Article  Google Scholar 

  13. Amiri, M., Bahrami, F., Janahmadi, M.: Functional contributions of astrocytes in synchronization of a neuronal network model. J. Theor. Biol. 292, 60–70 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Amiri, M., Bahrami, F., Janahmadi, M.: Modified thalamocortical model: a step towards more understanding of the functional contribution of astrocytes to epilepsy. J. Comput. Neurosci. 33(2), 285–299 (2012)

    Article  MathSciNet  Google Scholar 

  15. Amiri, M., Hosseinmardi, N., Bahrami, F., Janahmadi, M.: Astrocyte–neuron interaction as a mechanism responsible for generation of neural synchrony: a study based on odeling and experiments. J. Comput. Neurosci. 34(3), 489–504 (2013)

    Article  MathSciNet  Google Scholar 

  16. Nazari, S., Faez, K., Karami, E., Amiri, M.: A digital neurmorphic circuit for a simplified model of astrocyte dynamics. Neurosci. Lett. 582, 21–26 (2014)

    Article  Google Scholar 

  17. Joshi, J., Zhang, J., Wang, C., Hsu, C. C., Parker, A.C., Zhou, C., Ravishankar, U.: A biomimetic fabricated carbon nanotube synapse for prosthetic applications. In: Life Science Systems and Applications Workshop (LiSSA), pp. 139–142 (2011)

  18. Nazari, S., Faez, K., Amiri, M., Karami, E.: A novel digital implementation of neuron–astrocyte interactions. J. Comput. Electron. 14, 227–239 (2015)

    Article  Google Scholar 

  19. Ranjbar, M., Amiri, M.: An analog astrocyte-neuron interaction circuit for neuromorphic applications. J. Comput. Electron. (JCEL) (2015). doi:10.1007/s10825-015-0703-3

  20. Nazari, S., Faez, K., Amiri, M., Karami, E.: A digital implementation of neuron–astrocyte interaction for neuromorphic applications. Neural Netw. 66, 79–90 (2015)

    Article  Google Scholar 

  21. Serrano-Gotarredona, T., Masquelier, T., Prodromakis, T., Indiveri, G., Linares-Barranco, B.: STDP and STDP variations with memristors for spiking neuromorphic learning systems. Front. Neurosci. 7, 2 (2013)

    Article  Google Scholar 

  22. Davies, S., Galluppi, F., Rast, A.D., Furber, S.B.: A forecast-based STDP rule suitable for neuromorphic implementation. Neural Netw. 32, 3–14 (2012)

    Article  Google Scholar 

  23. Misra, J., Saha, I.: Artificial neural networks in hardware: a survey of two decades of progress. Neurocomputing 74(1), 239–255 (2010)

    Article  Google Scholar 

  24. Brink, S., Nease, S., Hasler, P.: Computing with networks of spiking neurons on a biophysically motivated floating-gate based neuromorphic integrated circuit. Neural Netw. 45, 39–49 (2013)

    Article  Google Scholar 

  25. Eliasmith, C., Stewart, T.C., Choo, X., Bekolay, T., DeWolf, T., Tang, Y., Rasmussen, D.: A large-scale model of the functioning brain. Science 338(6111), 1202–1205 (2012)

    Article  Google Scholar 

  26. Chicca, E., Stefanini, F., Bartolozzi, C., Indiveri, G.: Neuromorphic electronic circuits for building autonomous cognitive systems. In: Proceedings of the IEEE 102.9, pp. 1367–1388 (2014)

  27. Cassidy, A.S., Georgiou, J., Andreou, A.G.: Design of silicon brains in the nano-CMOS era: spiking neurons, learning synapses and neural architecture optimization. Neural Netw. 45, 4–26 (2013)

    Article  Google Scholar 

  28. Painkras, E., Plana, L.A., Garside, J., Temple, S., Galluppi, F., Patterson, C., Lester, D.R., Brown, A.D., Furber, S.B.: SpiNNaker: a 1-W 18-core system-on-chip for massively-parallel neural network simulation. IEEE J. Solid-State Circuit 48(8), 1943–1953 (2013)

  29. Piri, M., Amiri, M., Amiri, M.: A bio-inspired stimulator to desynchronize epileptic cortical population models: a digital implementation framework. Neural Netw. 67, 74–83 (2015)

    Article  Google Scholar 

  30. Amiri, M., Montaseri, G., Bahrami, F.: A phase plane analysis of neuron–astrocyte interactions. Neural Netw. 44, 157–165 (2013)

  31. Montaseri, G., Yazdanpanah, M. J., Amiri, M.: Astrocyte-inspired controller design for desynchronization of two coupled limit-cycle oscillators. In: Nature and Biologically Inspired Computing (NaBIC), Third World Congress on IEEE, pp. 195–200 (2011)

  32. Postnov, D.E., Koreshkov, R.N., Brazhe, N.A., Brazhe, A.R., Sosnovtseva, O.V.: Dynamical patterns of calcium signaling in a functional model of neuron-astrocyte networks. J. Biol. Phys. 35(4), 425–445 (2009)

    Article  Google Scholar 

  33. Cassidy, A.S., Georgiou, J., Andreou, A.G.: Design of silicon brains in the nano-CMOS era: spiking neurons, learning synapses and neural architecture optimization. Neural Netw. 45, 4–26 (2013)

    Article  Google Scholar 

  34. Ambroise, M., Levi, T., Joucla, S., Yvert, B., Saïghi, S.: Real-time biomimetic central pattern generators in an FPGA for hybrid experiments. Front. Neurosci. 7, 215 (2013)

    Article  Google Scholar 

  35. Naud, R., Marcille, N., Clopath, C., Gerstner, W.: Firing patterns in the adaptive exponential integrate-and-fire model. Biol. Cybern. 99(4–5), 335–347 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. Brette, R., Gerstner, W.: Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. J. Neurophysiol. 94, 3637–3642 (2005)

    Article  Google Scholar 

  37. Giugliano, M.: Calcium waves in astrocyte networks: theory and experiments. Front. Neurosci. 3(2), 160–161 (2009)

    Article  Google Scholar 

  38. Fellin, T., Pascual, O., Haydon, P.G.: Astrocytes coordinate synaptic networks: balanced excitation and inhibition. Physiology 21(3), 208–215 (2006)

    Article  Google Scholar 

  39. Newman, E.A.: New roles for astrocytes: regulation of synaptic transmission. Trends Neurosci. 26(10), 536–542 (2003)

    Article  Google Scholar 

  40. Clarke, Laura E., Attwell, David: An astrocyte TRP switch for inhibition. Nat. Neurosci. 15(1), 3–4 (2012)

    Article  Google Scholar 

  41. Amiri, M., Bahrami, F., Janahmadi, M.: Functional modeling of astrocytes in epilepsy: a feedback system perspective. Neural Comput. Appl. 20(8), 1131–1139 (2011)

    Article  Google Scholar 

  42. Amiri, M., Bahrami, F., Janahmadi, M.: On the role of astrocytes in epilepsy: a functional modeling approach. Neurosci. Res. 72(2), 172–180 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  43. Amiri, M., Montaseri, G., Bahrami, F.: On the role of astrocytes in synchronization of two coupled neurons: a mathematical perspective. Biol. Cybern. 105(2), 153–166 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  44. Terman, D., Rubin, J.E., Yew, A.C., Wilson, C.J.: Activity patterns in a model for the subthalamopallidal network of the basal ganglia. J. Neurosci. 22(7), 2963–2976 (2002)

    Google Scholar 

  45. Smith, K.: Neuroscience: settling the great glia debate. Nature 468, 160–162 (2010)

  46. Perea, G., Araque, A.: Astrocytes potentiate transmitter release at single hippocampal synapses. Science 317(5841), 1083–1086 (2007)

    Article  Google Scholar 

  47. Ranjbar, M., Amiri, M.: A modified DPI-neuron with various biological firing patterns. In: 6th Iranian Conference on Electrical and Electronics Engineering (ICEEE), pp. 2589–2592 (2014)

  48. Geiger, Randall L., Allen, Phillip E., Strader, Noel R.: VLSI Design Techniques for Analog and Digital Circuits, vol. 90. McGraw-Hill, New York (1990)

    Google Scholar 

  49. Silchenko, A.N., Tass, P.A.: Computational modeling of paroxysmal depolarization shifts in neurons induced by the glutamate release from astrocytes. Biol. Cybern. 98(1), 61–74 (2008)

    Article  MATH  Google Scholar 

  50. Ackert, J.M., Wu, S.H., Lee, J.C., Abrams, J., Hu, E.H., Perlman, I., Bloom-field, S.A.: Light-induced changes in spike synchronization between coupled ON direction selective ganglion cells in themam-malian retina. J. Neurosci. 26, 4206–4215 (2006)

    Article  Google Scholar 

  51. Benda, J., Longtin, A., Maler, L.: A synchronization-desynchronization code for natural communication signals. Neuron 52, 347–358 (2006)

    Article  Google Scholar 

  52. Amiri, M., Davoodi, E., Bahrami, F., Raza, M.: Bifurcation analysis of the Poincaré map function of intracranial EEG signals in temporal lobe epilepsy patients. Math. Comput. Simul. 81, 2471–2491 (2011)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmood Amiri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranjbar, M., Amiri, M. Analog implementation of neuron–astrocyte interaction in tripartite synapse. J Comput Electron 15, 311–323 (2016). https://doi.org/10.1007/s10825-015-0727-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-015-0727-8

Keywords

Navigation