Skip to main content
Log in

An analog astrocyte–neuron interaction circuit for neuromorphic applications

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Recent neurophysiologic findings have shown that astrocytes (the most abundant type of glial cells) are active partners in neural information processing and regulate the synaptic transmission dynamically. Motivated by these findings, in the present research, an analog neuromorphic circuit to study neuron–astrocyte signaling is presented. In this analog circuit, the firing dynamics of the neuron is described by Izhikevich neuron circuit and the \(\hbox {Ca}^{2+}\) dynamics of a single astrocyte explained by a functional simplified model introduced by Montaseri et al. Using the proposed neuron–astrocyte circuit, it is demonstrated that the proposed analog astrocyte is able to activate the analog neuron or change the neuron spiking frequency through bidirectional communication. This suggests that analog astrocyte is capable of modulating spike transmission frequency. Moreover, our results suggest that the analog circuit of neuron–astrocyte crosstalk produces diverse neural responses and therefore enhances the information processing capabilities of the neuromorphic circuits. This is suitable for applications in reconfigurable neuromorphic devices which implement biologically brain circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Mead, C.: Neuromorphic electronic systems. Proc. IEEE 78(10), 1629–1636 (1990)

    Article  Google Scholar 

  2. Hashmi, A., Nere, A., Thomas, J.J., Lipasti, M.: A case for neuromorphic ISAs. ACM SIGPLAN Notices 47(4), 145–158 (2012)

    Article  Google Scholar 

  3. Arthur, J.V., Merolla, P.A., Akopyan, F., Alvarez, R., Cassidy, A., Chandra, S., Esser, S.K., Imam, N., Risk, W., Rubin, D.B.D., Manohar, R., Modha, D.S.: Building block of a programmable neuromorphic substrate: a digital neurosynaptic core. In: The 2012 International Joint Conference on Neural Networks (IJCNN), pp. 1–8 (2012)

  4. Rowcliffe, P., Feng, J.: Training spiking neuronal networks with applications in engineering tasks. IEEE Trans. Neural Netw. 19(9), 1626–1640 (2008)

    Article  Google Scholar 

  5. Indiveri, G., Linares-Barranco, B., Hamilton, T.J., van Schaik, A., Etienne-Cummings, R., Delbruck, T., Liu, S.-C., Dudek, P., Häfliger, P., Renaud, S., Schemmel, J., Cauwenberghs, G., Arthur, J., Hynna, K., Folowosele, F., Saïghi, S., Serrano-Gotarredona, T., Wijekoon, J., Wang, Y., Boahen, K.: Neuromorphic silicon neuron circuits. Front. Neurosci. 5, 73 (2011)

    Google Scholar 

  6. Bartolozzi, C., Indiveri, G.: Synaptic dynamics in analog VLSI. Neural Comput. 19(10), 2581–2603 (2007)

    Article  MATH  Google Scholar 

  7. Joshi J., Zhang, J., Wang, C., Hsu, C.C., Parker, A.C., Zhou, C., Ravishankar, U.: A biomimetic fabricated carbon nanotube synapse for prosthetic applications. In: Life Science Systems and Applications Workshop (LiSSA), pp. 139–142 (2011)

  8. Serrano-Gotarredona, T., Masquelier, T., Prodromakis, T., Indiveri, G., Linares-Barranco, B.: STDP and STDP variations with memristors for spiking neuromorphic learning systems. Front. Neurosci. 7, 2 (2013)

    Article  Google Scholar 

  9. Davies, S., Galluppi, F., Rast, A.D., Furber, S.B.: A forecast-based STDP rule suitable for neuromorphic implementation. Neural Netw. 32, 3–14 (2012)

    Article  Google Scholar 

  10. Sridharan, D., Millner, S., Arthur, J., Boahen, K.: Robust spatial working memory through inhibitory gamma synchrony. Front. Neurosci. (2010). doi:10.3389/conf.fnins.2010.03.00012

    Google Scholar 

  11. Lichtsteiner, P., Posch, C., Delbruck, T.: A \(128\times 128\) 120 dB \(15\upmu \text{ s }\) latency asynchronous temporal contrast vision sensor. IEEE J. Solid State Circ. 43(2), 566–576 (2008)

    Article  Google Scholar 

  12. Andreou, A.G., Boahen, K.A.: Modeling inner and outer plexiform retinal processing using nonlinear coupled resistive networks. In: SPIE 1453, Human Vision, Visual Processing, and Digital Display II. (1991). doi:10.1117/12.44362

  13. Chan, V., Liu, S.C., van Schaik, A.: AER EAR: a matched silicon cochlea pair with address event representation interface. IEEE Trans. Circ. Syst. I 54(1), 48–59 (2007)

    Article  Google Scholar 

  14. Pereira Jr, A., Furlan, F.A.: On the role of synchrony for neuron-astrocyte interactions and perceptual conscious processing. J. Biol. Phys. 35(4), 465–480 (2009)

    Article  Google Scholar 

  15. Araque, A., Parpura, V., Sanzgiri, R.P., Haydon, P.G.: Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci. 22(5), 208–215 (1999)

    Article  Google Scholar 

  16. Nimmerjahn, A.: Astrocytes going live: advances and challenges. J. Physiol. 587(Part 8), 1639–1647 (2009)

    Article  Google Scholar 

  17. Koizumi, S.: Synchronization of \(\text{ Ca }^{2+}\) oscillations: involvement of ATP release in astrocytes. FEBS J. 277(2), 286–292 (2010)

    Article  Google Scholar 

  18. Fiacco, T.A., McCarthy, K.D.: Intracellular astrocyte calcium waves in situ increase the frequency of spontaneous AMPA receptor currents in CA1 pyramidal neurons. J. Neurosci. 24, 722–732 (2004)

    Article  Google Scholar 

  19. Hamilton, N.B., Attwell, D.: Do astrocytes really exocytose neurotransmitters? Nat. Rev. Neurosci. 11(4), 227–238 (2010)

    Article  Google Scholar 

  20. Dallérac, G., Chever, O., Rouach, N.: How do astrocytes shape synaptic transmission? Insights from electrophysiology. Front. Cell. Neurosci. 7, 159 (2013)

    Google Scholar 

  21. Fellin, T., Pascual, O., Haydon, P.G.: Astrocytes coordinate synaptic networks: balanced excitation and inhibition. Physiology 21(3), 208–215 (2006)

    Article  Google Scholar 

  22. Halassa, M.M., Fellin, T., Haydon, P.G.: Tripartite synapses: roles for astrocytic purines in the control of synaptic physiology and behavior. Neuropharmacology 57, 343–346 (2009)

    Article  Google Scholar 

  23. Kuga, N., Sasaki, T., Takahara, Y., Matsuki, N., Ikegaya, Y.: Large-scale calcium waves traveling through astrocytic networks in vivo. J. Neurosci. 31(7), 2607–2614 (2011)

    Article  Google Scholar 

  24. Papa, M., De Luca, C., Petta, F., Alberghina, L., Cirillo, G.: Astrocyte-neuron inter play in maladaptive plasticity. Neurosci. Biobehav. Rev. 42, 35–54 (2014)

    Article  Google Scholar 

  25. Newman, E.A.: New roles for astrocytes: regulation of synaptic transmission. Trends Neurosci. 26(10), 536–542 (2003)

    Article  Google Scholar 

  26. Giugliano, M.: Calcium waves in astrocyte networks: theory and experiments. Front. Comput. Neurosci. 3, 160–161 (2009)

    Article  Google Scholar 

  27. Hertz, L., Zielke, H.R.: Astrocytic control of glutamatergic activity: astrocytes as stars of the show. Trends Neurosci. 27, 735–743 (2004)

    Article  Google Scholar 

  28. Haydon, P.G., Araque, A.: Astrocytes as Modulators of Synaptic Transmission. The Tripartite Synapse: Glia in Synaptic Transmission, pp. 185–198. Oxford University Press, New York (2002)

    Google Scholar 

  29. Santello, M., Volterra, A.: Synaptic modulation by astrocytes via \(\text{ Ca }^{2+}\)-dependent glutamate release. Neuroscience 158, 253–259 (2009)

    Article  Google Scholar 

  30. López-Hidalgo, M., Schummers, J.: Corticalmaps: a role for astrocytes? Curr. Opin. Neurobiol. 24, 176–189 (2014)

    Article  Google Scholar 

  31. Amiri, M., Bahrami, F., Janahmadi, M.: Modified thalamocortical model: a step towards more understanding of the functional contribution of astrocytes to epilepsy. J. Comput. Neurosci. 33(2), 285–299 (2012)

    Article  MathSciNet  Google Scholar 

  32. Joshi, J., Parker, A.C., Hsu, C.C.: A carbon nanotube cortical neuron with spike-timing-dependent plasticity. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2009 (EMBC 2009), pp. 1651–1654 (2009)

  33. Pfeil, T., Grübl, A., Jeltsch, S., Müller, E., Müller, P., Petrovici, M.A., Meier, K.: Six networks on a universal neuromorphic computing substrate. Front. Neurosci. 7, 11 (2013)

    Article  Google Scholar 

  34. Amiri, M., Bahrami, F., Janahmadi, M.: Functional contributions of astrocytes in synchronization of a neuronal network model. J. Theor. Biol. 292, 60–70 (2012)

    Article  MathSciNet  Google Scholar 

  35. Amiri, M., Hosseinmardi, N., Bahrami, F., Janahmadi, M.: Astrocyte-neuron interaction as a mechanism responsible for generation of neural synchrony: a study based on odeling and experiments. J. Comput. Neurosci. 34(3), 489–504 (2013)

    Article  MathSciNet  Google Scholar 

  36. Nazari, S., et al.: A digital neurmorphic circuit for a simplified model of astrocyte dynamics. Neurosci. Lett. (2014). doi:10.1016/j.neulet.2014.07.055

    Google Scholar 

  37. Irizarry-Valle, Y., Parker, A.C., Joshi, J.: A CMOS neuromorphic approach to emulate neuro-astrocyte interactions. In: The 2013 International Joint Conference on IEEE Neural Networks (IJCNN), pp. 1–7 (2013)

  38. Reato, D., Cammarota, M., Parra, L.C., Carmignoto, G.: Computationalmodel of neuron-astrocyte interactions during focal seizure generation. Front. Comput. Neurosci. 6, 81 (2012)

    Article  Google Scholar 

  39. Wijekoon, J.H.B., Dudek, P.: Spiking and bursting firing patterns of a compact VLSI cortical neuron circuit. In: IEEE International Conference on Neural Networks, pp. 1332–1337 (2007)

  40. Izhikevich, E.M.: Simple model of spiking neurons. IEEE Trans. Neural Netw. 14, 1569–1572 (2003)

    Article  Google Scholar 

  41. Volterra, A., Liaudet, N., Savtchouk, I.: Astrocyte \(\text{ Ca }^{2+}\)signalling: an unexpected complexity. Nat. Rev. Neurosci. 15(5), 327–335 (2014)

    Article  Google Scholar 

  42. Montaseri, G., Yazdanpanah, M.J., Amiri, M.: Astrocyte-inspired controller design for desynchronization of two coupled limit-cycle oscillators. In: IEEE 3rd World Congress on Nature and Biologically Inspired Computing (NaBIC), Salamanca, Spain, pp. 19–21 (2011)

  43. Postnov, D.E., Koreshkov, R.N., Brazhe, N.A., Brazhe, A.R., Sosnovtseva, O.V.: Dynamical patterns of calcium signaling in a functional model of neuron-astrocyte networks. J. Biol. Phys. 35(4), 425–445 (2009)

    Article  Google Scholar 

  44. Postnov, D.E., Ryazanov, L.S., Sosnovtseva, O.V.: Functional modeling of neural-glial interaction. Biosystems 89, 84–91 (2007)

    Article  Google Scholar 

  45. Frühbeis, C., Fröhlich, D., Krämer-Albers, E.M.: Emerging roles of exosomes in neuron-glia communication. Membr. Physiol. Membr. Biophys. 3, 119 (2012)

    Google Scholar 

  46. Frühbeis, C., Fröhlich, D., Kuo, W.P., Amphornrat, J., Thilemann, S., Saab, A.S., et al.: Neurotransmitter-triggered transfer of exosomes mediates oligodendrocyte-neuron communication. PLoS Biol. 11(7), e1001604 (2013)

    Article  Google Scholar 

  47. Terman, D., Rubin, J.E., Yew, A.C., Wilson, C.J.: Activity patterns in a model for the subthalamopallidal network of the basal ganglia. J. Neurosci. 22, 2963–2976 (2002)

    Google Scholar 

  48. Volman, V., Ben-Jacob, E., Levine, H.: The astrocyte as a gatekeeper of synaptic information transfer. Neural Comput. 19, 303–326 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  49. Smith, K.: Neuroscience: settling the great glia debate. Nature 468, 160–162 (2010)

    Article  Google Scholar 

  50. Perea, G., Araque, A.: Properties of synaptically evoked astrocyte calcium signal reveal synaptic information processing by astrocytes. J. Neurosci. 25, 2192–2203 (2005)

    Article  Google Scholar 

  51. Fellin, T.: Communication between neurons and astrocytes: relevance to the modulation of synaptic and network activity. J. Neurochem. 108, 533–544 (2009)

    Article  Google Scholar 

  52. Min, R., Santello, M., Nevian, T.: The computational power of astrocyte mediated synaptic plasticity. Front. Comput. Neurosci. 6, 93 (2012)

  53. Indiveri, G., Horiuchi, T.K.: Frontiers in neuromorphic engineering. Front. Neurosci. 5, 118 (2011)

    Google Scholar 

  54. Wijekoon, J.H.B., Dudek, P.: Integrated circuit implementation of a cortical neuron. In: International Symposium Circuits and Systems on IEEE, pp. 1784–1787 (2008)

  55. Wijekoon, J.H.B., Dudek, P.: VLSI circuits implementating computational models of neocortical circuits. Neural Netw. 210, 93–109 (2012)

  56. Wijekoon, J.H.B., Dudek, P.: Compact silicon neuron circuit with spiking and bursting behaviour. Neural Netw. 21(2–3), 524–34 (2008)

    Article  Google Scholar 

  57. Quilichini, P.P., Bernard, C.: Brain state-dependent neuronal computation. Front. Comput. Neurosci. 6, 77 (2012)

    Article  Google Scholar 

  58. Nazari, S., Faez, K., Amiri, M., Karami, E.: A novel digital implementation of neuron–astrocyte interactions. J. Comput. Electron. 14(1), 227–239 (2014)

  59. Nazari, S., Faez, K., Amiri, M., Karami, E.: A digital implementation of neuron–astrocyte interaction for neuromorphic applications. Neural Netw. 66, 79–90 (2015)

  60. Nazari, S., Amiri, M., Faez, K., Amiri, M.: Multiplier-less digital implementation of neuron–astrocyte signalling on FPGA. Neuro Comput. (2015)

  61. Amiri, M., Montaseri, Gh., Bahrami, F.: A phase plane analysis of neuron–astrocyte interactions. Neural Netw. 44, 157–165 (2013)

  62. Rusakov, D.A., Zheng, K., Henneberger, C.: Astrocytes as regulators of synaptic function: a quest for the Ca\(^{2+}\) master key. Neuroscientist 17, 513–523 (2011)

  63. Amiri, M., Montaseri, Gh., Bahrami, F.: On the role of astrocytes in synchronization of two coupled neurons: a mathematical perspective. Biol. Cybern. 105(2), 153–166 (2011)

  64. Amiri, M., Bahrami, F., Janahmadi, M.: Functional modeling of astrocytes in epilepsy: a feedback system perspective. Neural Comput. Appl. 20(8), 1131–1139 (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmood Amiri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranjbar, M., Amiri, M. An analog astrocyte–neuron interaction circuit for neuromorphic applications. J Comput Electron 14, 694–706 (2015). https://doi.org/10.1007/s10825-015-0703-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-015-0703-3

Keywords

Navigation