Skip to main content
Log in

Growth and development of conifer pollen tubes

  • Review
  • Published:
Sexual Plant Reproduction Aims and scope Submit manuscript

Abstract

Conifer pollen tubes are an important but underused experimental system in plant biology. They represent a major evolutionary step in male gametophyte development as an intermediate form between the haustorial pollen tubes of cycads and Ginkgo and the structurally reduced and faster growing pollen tubes of flowering plants. Conifer pollen grains are available in large quantities, most can be stored for several years, and they grow very well in culture. The study of pollen tube growth and development furthers our understanding of conifer reproduction and contributes towards our ability to improve on their productivity. This review covers taxonomy and morphology to cell, developmental, and molecular biology. It explores recent advances in research on conifer pollen and pollen tubes in vivo, focusing on pollen wall structure, male gametophyte development within the pollen wall, pollination mechanisms, pollen tube growth and development, and programmed cell death. It also explores recent research in vitro, including the cellular mechanisms underlying pollen tube elongation, in vitro fertilization, genetic transformation and gene expression, and pine pollen tube proteomics. With the ongoing sequencing of the Pinus taeda genome in several labs, we expect the use of conifer pollen tubes as an experimental system to increase in the next decade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1-4 Fig. 1 Fig. 2 Fig. 3 Fig. 4
Fig. 5
Fig. 6
Fig. 7-8 Fig. 7 Fig. 8
Fig. 9-16 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 Fig. 14 Fig. 15 Fig. 16

Similar content being viewed by others

References

  • Anderhag P, Hepler PK, Lazzaro MD (2000) Microtubules and microfilaments are both responsible for pollen tube elongation in the conifer Picea abies (Norway spruce). Protoplasma 214:141–157

    Article  Google Scholar 

  • Anderson ED, Owens JN (2000) Microsporogenesis, pollination, pollen germination and male gametophyte development in Taxus brevifolia. Ann Bot 86:1033–1044

    Article  Google Scholar 

  • Anderson ED, Owens JN, Colangeli AM, Russell JH (2002) Challenges facing yellow cypress (Chamaecyparis nootkatensis) seed orchards: low filled seed production, pollen-cone abortion, self-pollination, and accelerated embryo development. Can J For Res 32:1411–1419

    Article  Google Scholar 

  • Aronen TS, Nikkanen TO, Haggman HM (1998) Compatibility of different pollination techniques with microprojectile bombardment of Norway spruce and Scots pine pollen. Can J For Res 28:79–86

    Article  Google Scholar 

  • Aronen TS, Nikkanen TO, Haggman HM (2003) The production of transgenic Scots pine (Pinus sylvestris L.) via the application of transformed pollen in controlled crossings. Trans Res 12:375–378

    Article  CAS  Google Scholar 

  • Bahrman N, Petit RJ (1995) Genetic polymorphism in maritime pine (Pinus pinaster Ait.) assessed by two-dimensional gel electrophoresis of needle, bud and pollen proteins. J Mol Evol 41:231–237

    Article  CAS  Google Scholar 

  • Bruns D, Owens JN (2000) Western white pine (Pinus monticola) reproduction: II. Fertilization and cytoplasmic inheritance. Sex Plant Reprod 13:75–84

    Article  Google Scholar 

  • Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J 3:1–30

    Article  PubMed  CAS  Google Scholar 

  • Chandler LM, Owens JN (2004) The pollination mechanism in Abies amabilis. Can J For Res 34:1–10

    Article  Google Scholar 

  • Colangeli AM, Owens JN (1989) Post-dormancy seed-cone development and the pollination mechanism in western hemlock (Tsuga heterophylla). Can J For Res 19:44–53

    Google Scholar 

  • Colangeli AM, Owens JN (1990a) The relationship between time of pollination, pollination efficiency, and cone size in western red cedar (Thuja plicata). Can J Bot 68:439–443

    Article  Google Scholar 

  • Colangeli AM, Owens JN (1990b) Cone and seed development in wind-pollinated western hemlock (Tsuga heterophylla) clone bank. Can J For Res 20:1432–1437

    Google Scholar 

  • Dawkins MD, Owens JN (1993) In vitro and in vivo pollen hydration, germination, and pollen tube growth in white spruce, Picea glauca (Moench) voss. Int J Plant Sci 164:506–521

    Article  Google Scholar 

  • Derksen J, Li Y, Knuiman B, Geurts H (1999) The wall of Pinus sylvestris L. pollen tubes. Protoplasma 208:26–36

    Article  CAS  Google Scholar 

  • de Win AHN, Knuiman B, Pierson ES, Geurts H, Kengen HMP, Derkson J (1996) Development and cellular organization of Pinus sylvestris pollen tubes. Sex Plant Reprod 9:93–101

    Article  Google Scholar 

  • Doonan JH, Cove DJ, Lloyd CW (1988) Microtubules and microfilaments in tip growth: evidence that microtubules impose polarity on protonemal growth in Physcomitrella patens. J Cell Sci 89:533–540

    Google Scholar 

  • Dumont-BeBoux N, von Aderkas P (1996) In vitro pollen tube growth in Douglas fir. Can J For Res 27:674–678

    Article  Google Scholar 

  • Dumont-BeBoux N, Weber M, Ma Y, von Aderkas P (1998) Intergeneric pollen-megagametophyte relationships of conifers in vitro. Theor Appl Genet 97:881–887

    Article  Google Scholar 

  • Farjon A (1998) World checklist and bibliography of conifers. The Royal Botanical Gardens, Kew, UK, p 297

    Google Scholar 

  • Fernando DD (2005) Characterization of pollen tube development in Pinus strobus (Eastern white pine) through proteomic analysis of differentially expressed proteins. Proteomics 56:2619–2628

    Google Scholar 

  • Fernando DD, Owens JN, von Aderkas P, Takaso T (1997) In vitro pollen tube growth and penetration of female gametophyte in Douglas fir (Pseudotsuga menziesii). Sex Plant Reprod 10:209–216

    Article  Google Scholar 

  • Fernando DD, Owens JN (2001) Development of an in vitro technology to confer white pine blister rust resistance. In: Sniezko, R.A. et al. eds. 2004. Breeding and genetic resources of five-needle pines: growth, adaptability and pest resistance; 2001 July 23–27 Medford, OR, USA. IUFRO Working Party 2.02.15. Proceedings RMRS-P-32. Fort Collins, CO: US Department of Agriculture, Forest Service, Rocky Mountain Research Station. pp 163–168

  • Fernando DD, Owens JN, Misra S (2000) Transient gene expression in pine pollen tubes following particle bombardment. Plant Cell Rep 19:224–228

    Article  CAS  Google Scholar 

  • Fernando DD, Owens JN, von Aderkas P (1998) In vitro fertilization from co-cultured pollen tubes and female gametophytes of Douglas fir (Pseudotsuga menziesii). Theor Appl Genet 96:1057–1063

    Article  Google Scholar 

  • Fernando DD, Owens JN, Yu X (2001) RNA and protein synthesis during in vitro pollen germination and tube elongation in Pinus monticola and other conifers. Sex Plant Reprod 13:259–264

    Article  CAS  Google Scholar 

  • Fisher DD, Cyr RJ (1998) Extending the microtubule/microfibril paradigm: cellulose synthesis is required for normal cortical microtubule alignment in elongating cells. Plant Physiol 116:1043–1051

    Article  PubMed  CAS  Google Scholar 

  • Frankis RC (1990) RNA and protein synthesis in germinating pine pollen. J Exp Bot 41:1469–1473

    Article  CAS  Google Scholar 

  • Haggman HM, Aronen TS, Nikkanen TO (1997) Gene transfer by particle bombardment to Norway spruce and Scots pine pollen. Can J For Res 27:928–935

    Article  Google Scholar 

  • Hao H, Li Y, Hu Y, and Lin J (2005) inhibition of RNA and protein synthesis in pollen tube development of Pinus bungeana by actinomycin D and cycloheximide. New Phytol 165:721–730

    Article  PubMed  CAS  Google Scholar 

  • Hay I, Lachance D, von Aderakas P, Charest PJ (1994) Transient chimeric gene expression in pollen of five conifer species following microparticle bombardment. Can J For Res 24:2417–2423

    Google Scholar 

  • Hiratsuka R, Yamada Y, Terasaka O (2002) Programmed cell death of Pinus nucellus in response to pollen tube penetration. J Plant Res 115:141–148

    Article  PubMed  Google Scholar 

  • Holdaway-Clarke TL, Hepler PK (2003) Control of pollen tube growth: role of ion gradients and fluxes. New Phytol 159:539–563

    Article  CAS  Google Scholar 

  • Jorhi BM (1984) Embryology of Angiosperms. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Justus CD, Anderhag P, Goins JL, Lazzaro MD (2004) Microtubules and microfilaments coordinate to direct a fountain-streaming pattern in elongating conifer pollen tube tips. Planta 219:103–109

    Article  PubMed  CAS  Google Scholar 

  • Kadota A, Wada M (1992) Reorganization of the cortical cytoskeleton in tip growing fern protonemal cells during phytochrome mediated phototropism and blue light induced apical swelling. Protoplasma 166:35–41

    Article  Google Scholar 

  • Kadota A, Yoshizaki N, Wada M (1999) Cytoskeletal changes during resumption of tip growth in non-growing protonema cells of the fern Adiantum capillus-veneris L. Protoplasma 207:195–202

    Article  Google Scholar 

  • Kurmann MH (1989) Pollen wall formation in Abies concolor and a discussion on wall layer homologies. Can J Bot 67:2489–2504

    Google Scholar 

  • Lazzaro MD (1996) The actin microfilament network within elongating pollen tubes of the gymnosperm Picea abies (Norway spruce). Protoplasma 194:186–194

    Article  CAS  Google Scholar 

  • Lazzaro MD (1998) The spermatogenous body cell of the conifer Picea abies (Norway spruce) contains actin microfilaments. Protoplasma 201:194–201

    Article  Google Scholar 

  • Lazzaro MD (1999) Microtubule organization in germinated pollen of the conifer Picea abies (Norway spruce, Pinaceae). Amer J Bot 86:759–766

    Article  Google Scholar 

  • Lazzaro MD, Donohue JM, Soodavar FM (2003) Disruption of cellulose synthesis by isoxaben causes tip swelling and disorganizes cortical microtubules in elongating conifer pollen tubes. Protoplasma 220:201–207

    Article  PubMed  CAS  Google Scholar 

  • Lazzaro MD, Cardenas L, Bhatt AP, Justus CD, Phillips MS, Holdaway-Clarke TL, Hepler PK (2005) Calcium gradients in conifer pollen tubes: dynamic properties differ from those seen in angiosperms. J Exp Bot (DOI: 10.1093/jxb/eri256)

  • Lev-Yadun S, Sederoff R (2000) Pinus taeda as a model system for studying plant evolution, wood formation, and perennial growth. J Plant Growth Regul 19:290–305

    Article  CAS  Google Scholar 

  • Martinussen I, Bate N, Weterings K, Junttila O, Twell D (1995) Analysis of gene regulation in growing pollen tubes of angiosperm and gymnosperm species using microprojectile bombardment. Physiol Plant 93:445–450

    Article  CAS  Google Scholar 

  • Mascarenhas JP (1993) Molecular mechanisms of pollen tube growth and differentiation. Plant Cell 5:1303–1314

    Article  PubMed  CAS  Google Scholar 

  • Meske V, Ruppert V, Hartmann E (1996) Structural basis for the red light induced repolarization of tip growth in caulonema cells of Ceratodon purpureus. Protoplasma 192:189–198

    Article  Google Scholar 

  • Meyen SV (1984) Basic features of gymnosperm systematics and phylogeny as evidenced by the fossil record. Bot Rev 50:1–115

    Google Scholar 

  • Miller CN (1975) Mesozoic conifers. Bot Rev 43:217–280

    Article  Google Scholar 

  • Moutinho A, Camacho L, Haley A, Salome Pais M, Trewavas A, Malho R (2001) Antisense perturbation of protein function in living pollen tubes. Sex Plant Reprod 14:101–104

    Article  CAS  Google Scholar 

  • Owens JN, Simpson SJ, Molder M (1981) The pollination mechanism and the optimal time of pollination in Douglas-fir (Pseudotsuga menziesii). Can J For Res 11:36–50

    Article  Google Scholar 

  • Owens JN, Simpson S (1986) Pollen from conifers native to British Columbia. Can J For Res 16:955–967

    Article  Google Scholar 

  • Owens JN, Morris SJ (1990) Cytological basis for cytoplasmic inheritance in Pseudotsuga menziesii. I. Pollen tube and archegonial development. Amer J Bot 77:433–445

    Article  Google Scholar 

  • Owens JN (1993) Chapter 1. Pollination Biology. In: Pollen management Handbook. Vol. II. ISDA, For Ser Agric Handbook, 698:1–13

  • Owens JN, Morris S, Catalano G (1994) How the pollination mechanism and prezygotic and postzygotic events affect seed production in Larix occidentalis. Can J For Res 24:917–927

    Article  Google Scholar 

  • Owens JN, Catalano G, Morris SJ, Aitken-Christie J (1995a) The reproductive biology of Kauri (Agathis australis). I. Pollination and prefertilization development. Int J Plant Sci 156:257–269

    Article  Google Scholar 

  • Owens JN, Catalano G, Morris SJ, Aitken-Christie J (1995b) The reproductive biology of Kauri (Agathis australis). II. Male gametes, fertilization and cytoplasmic inheritance. Int J Plant Sci 156:404–416

    Article  Google Scholar 

  • Owens JN, Takaso T, Runions CJ (1998) Pollination in conifers. Trends Plant Sci 3:479–485

    Article  Google Scholar 

  • Owens JN, Bruns D (2000) Western white pine (Pinus monticola) reproduction: I. Gametophyte development. Sex Plant Reprod 13:75–84

    Google Scholar 

  • Owens JN, Bennett J, L’Hirondelle S (2005) Pollination and cone morphology affect cone and seed production in lodgepole pine seed orchards. Can J For Res 35:383–400

    Article  Google Scholar 

  • Pettitt JM (1985) Pollen tube development and characteristics of the protein emissions in conifers. Ann Bot 56:379–397

    CAS  Google Scholar 

  • Rose JKC, Bashir S, Giovannoni JJ, Jahn MM, Saravanan RS (2004) Tackling the plant proteome: practical approaches, hurdles and experimental tools. Plant J 39:715–733

    Article  PubMed  CAS  Google Scholar 

  • Runions JC, Catalano GL, Owens JN (1995) Pollination mechanism of seed orchard interior spruce. Can J For Res 25:1434–1444

    Google Scholar 

  • Runions CJ, Owens JN (1996a) Pollen scavenging and rain involvement in the pollination mechanism of interior spruce. Can J Bot 74:115–124

    Article  Google Scholar 

  • Runions CJ and Owens JN (1996b) Evidence of pre-zygotic self-incompatibility in a conifer. In: Owens SJ, Rudall PJ (eds) Reproductive Biology. Royal Botanic Gardens, Kew, pp 255–264

    Google Scholar 

  • Runions CJ, Owens JN, (1999) Sexual reproduction of interior spruce (Pinaceae). II. Fertilization to early embryo formation. Int J Plant Sci 160:641–652

    Article  Google Scholar 

  • Said C, Villar M, Zandonella P (1991) Ovule receptivity and pollen viability in Japanese larch (Larix leptolepis Gord.) Silvae Genet 40:1–6

    Google Scholar 

  • Schwuchow J, Sack FD, Hartmann E (1990) Microtubule distribution in gravitropic protonemata of the moss Ceratodon. Protoplasma 159:60–69

    Article  PubMed  CAS  Google Scholar 

  • Schwuchow J, Sack FD (1994) Microtubules restrict plastid sedimentation in protonemata of the moss Ceratodon. Cell Motil Cytoskel 29:366–374

    Article  CAS  Google Scholar 

  • Singh H (1978) Embryology of Gymnosperms. (Handbuch der Pflanzenanatomie). Gebruder Borntraeger, Berlin Heidelberg New York, p 302

    Google Scholar 

  • Sweet GB, Lewis PN (1969) A diffusible auxin from Pinus radiata pollen and it’s possible role in stimulating ovule development. Planta 89:380–384

    Article  CAS  Google Scholar 

  • Sweet GB, Lewis PN (1971) Plant growth substances in the pollen of Pinus radiata at different levels of germination. NZ J Bot 9:146–156

    Google Scholar 

  • Takaso T, Owens JN (1994) Effects of ovular secretions on pollen in Pseudotsuga menziesii (Pinaceae). Am J Bot 81:504–513

    Article  Google Scholar 

  • Takaso T, Owens JN (1997) Pollen movement in the micropylar canal of Larix and its simulation. J Plant Res 110:259–264

    Article  Google Scholar 

  • Takaso T, Von Aderkas P, Owens JN (1996) Prefertilization events in ovules of Pseudotsuga: ovular secretion and its influence on pollen tubes. Can J Bot 74:1214–1219

    Article  Google Scholar 

  • Tang W, Samuels V, Whitley N, Bloom N, Delagarza T, Newton RJ (2004) Post-transcriptional gene silencing induced by short interfering RNAs in cultured transgenic plant cells. Genomics, Proteomics and Bioinformatics 2:97–108

    CAS  Google Scholar 

  • Terasaka O, Niitsu T (1994) Differential roles of microtubule and actin-myosin cytoskeleton in the growth of Pinus pollen tubes. Sex Plant Reprod 7:264–272

    Article  Google Scholar 

  • Tian L, Seguin A, Charest PJ (1997) Expression of the green flourescent protein gene in conifer tissues. Plant Cell Rep 16:267–271

    CAS  Google Scholar 

  • Tomlinson PB, Braggins JE, Rattanbury JA (1991) Pollination drop in relation to cone morphology in Podocarpaceae: a novel reproductive mechanism. Am J Bot 78:1289–1303

    Article  Google Scholar 

  • Waterhouse PM, Helliwell CA (2003) Exploring plant genomics by RNA-induced gene silencing. Nature Reviews: Genetics 4:29–38

    Article  PubMed  CAS  Google Scholar 

  • Webber JE, Bonnet-Masembert M (1989) Influence of moisture content of forest tree pollen on its response to different viability tests. Ann Sci For 46:605–635

    Article  Google Scholar 

  • Webber JE, Painter RA (1996) Douglas fir pollen management. Sec Ed Res. Br. B.C. Min. For., Victoria, B.C. Pap. 02/1996. p 91

  • Willemse MTM (1968) Development of the micro- and macro-gametophytes of Pinus sylvestris L. Acta Bot Neerl 17:330–331

    Google Scholar 

  • Wilson V, Owens JN (1999) The reproductive biology of totara (Podocarpus totara) (Podocarpaceae). Ann Bot 83:401–411

    Article  Google Scholar 

  • Young LCT, Stanley RG (1963) Incorporation of tritiated nucleosides thymidine, uridine and cytidine in nuclei of germinating pine pollen. Nucleus 6:83–90

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danilo D. Fernando.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernando, D.D., Lazzaro, M.D. & Owens, J.N. Growth and development of conifer pollen tubes. Sex Plant Reprod 18, 149–162 (2005). https://doi.org/10.1007/s00497-005-0008-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00497-005-0008-y

Keywords

Navigation