Skip to main content

Pollen-Pistil Interaction and Fertilization

  • Chapter
  • First Online:
Reproductive Ecology of Flowering Plants: Patterns and Processes

Abstract

Pollen-pistil interaction covers the sequential events from pollination until the pollen tubes enter the ovules. During this interaction the pistil screens the pollen grains. Pollen of other species are inhibited at the level of pollen germination or pollen tube growth in the style. Conspecific pollen grains are recognized by the stigma and activate physiological processes to facilitate their germination and pollen tube growth. In self-incompatible species, even self-pollen are recognized and inhibited. Only compatible pollen grains which are most vigorous are selected for fertilization. Thus, there is a close dialogue between the gametophytic partners (pollen grains and pollen tubes) and the sporophytic partner (the pistil) during pollen-pistil interaction. Extracellular components present in and on the pollen wall and on the stigma and along the path of the pollen tube in the style are involved in pollen recognition and their subsequent promotion/inhibition. Some of the genes/gene products involved in these interactions have been identified in recent years in a few model systems.

After entering the ovary, pollen tubes are guided towards the micropyle of the ovule by the attractants secreted by the synergids of the embryo sac (ES). The nature of these attractants is known in some model systems such as Torenia and Arabidopsis. The pollen tube enters the ES through one of the synergids and discharges the two male gametes for fertilization. Some of the coordinated details amongst the cells of the ES in orchestrating pollen tube guidance, release of male gametes, double fertilization and cessation of the secretion of pollen tube attractants are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amien S et al (2010) Defensin-like ZmES4 mediates pollen tube burst in maize via opening of the potassium channel KZM1. PLoS Bio 8:e1000388

    Google Scholar 

  • Antoine AF, Faure JE, Dumas C, Feijó JA (2001) Differential contribution of cytoplasmic Ca21 and Ca21 influx to gamete fusion and egg activation in maize. Nat Cell Biol 3:1120–1123

    CAS  PubMed  Google Scholar 

  • Ascher PD (1977) Localization of the self- and inter-specific incompatibility reactions in style sections of Lilium longiflorum. Plant Sci Lett 10:199–203

    Google Scholar 

  • Balatkova V, Tupy J (1972) Some factors affecting the seed set after in vitro pollination of excised placentae of Nicotiana tabacum L. Biol Plant 14:82–88

    Google Scholar 

  • Balatkova E, Hrabetova E, Tupy J (1976) The effect of sugar nutrition of in vitro pollinated placentae on seed set and dormancy in Nicotiana tabacum L. Experientia 32:1255–1256

    CAS  Google Scholar 

  • Bednarska E (1989) Localization of calcium on the surface of stigma in Ruscus aculeatus. Planta 179:11–16

    CAS  PubMed  Google Scholar 

  • Bednarska E (1991) Calcium uptake from the stigma by the germinating pollen of Primula officinalis L. and Ruscus aculeatus L. Sex Plant Repro 7:5–16

    Google Scholar 

  • Brewbaker JL (1967) The distribution and phylogenetic significance of binucleate and trinucleate pollen grains in angiosperms. Am J Bot 54:1069–1083

    Google Scholar 

  • Cheung AY, Wu HM (2016) LURE is bait for multiple receptors. Nature 531:178–180

    CAS  PubMed  Google Scholar 

  • Cheung AY et al (1993) Characterization of c-DNA for stylar transmitting tissue specific proline-rich proteins in tobacco. Plant J 3:151–160

    CAS  PubMed  Google Scholar 

  • Cheung AY, Wang H, Wu HM (1995) A floral transmitting tissue-specific glycoprotein attracts pollen tubes and stimulates their growth. Cell 82:383–393

    CAS  PubMed  Google Scholar 

  • Clarke AE et al (1979) Pollen-stigma interactions: identification and characterization of surface components with recognition potential. Proc Natl Acad Sci U S A 76:3358–3362

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coe EH et al (1981) White pollen of maize. J Hered 72:318–320

    Google Scholar 

  • de Nettancourt D (1977) Incompatibility in angiosperms. Springer, Berlin

    Google Scholar 

  • Di Giorgio JAP, Bienert GP, Ayub ND et al (2016) Pollen-specific aquaporins NIP4-1 and NIP4-2 are required for pollen development and pollination in Arabidopsis thaliana. Plant Cell 28:1053–1077

    PubMed  PubMed Central  Google Scholar 

  • Dickinson HG (1995) Dry stigma, water and self-incompatibility in Brassica. Sex Plant Repro 8:1–10

    Google Scholar 

  • Dong J, Kim ST, Lord EM (2005) Plantacyanin plays a role in reproduction in Arabidopsis. Plant Physiol 138:778–789

    CAS  PubMed  PubMed Central  Google Scholar 

  • Doughty J et al (1993) Interaction between a coating-borne peptide of the Brassica pollen grain and stigmatic S (self-incompatibility) locus-specific glycoprotein. Proc Natl Acad Sci U S A 90:467–471

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dresselhaus T, Franklin-Tong N (2013) Male-female crosstalk during pollen germination, tube growth and guidance, and double fertilization. Mol Plant 6:1018–1036

    CAS  PubMed  Google Scholar 

  • Edlund AF, Swanson R, Preuss D (2004) Pollen and stigma structure and function: the role of diversity in pollination. Plant Cell 16:S84–S97

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gartel W (1974) Micronutrients – their significance in vine nutrition with special reference to boron deficiency and toxicity. Weinberg und Keller 21:435–508

    Google Scholar 

  • Gilbert SF (2000) Recognition of egg and sperm. developmental biology, 6th edn. Sinauer Associates Inc., Sunderland

    Google Scholar 

  • Goldman MHS, Goldberg RB, Mariani C (1995) Female sterile tobacco plants are produced by stigma-specific cell ablation. EMBO J 13:2976–2984

    Google Scholar 

  • Hagman M (1975) Incompatibility in forest trees. Proc R Soc B 188. https://doi.org/10.1098/rspb.1975.0022

  • Han YZ, Huang BQ, Guo FL et al (2002) Sperm extract and inositol 1,4,5-triphosphate induce cytosolic calcium rise in the central cell of Torenia fournieri. Sex Plant Repro 15:187–193

    CAS  Google Scholar 

  • Herberg S et al (2018) The Ly6/uPAR protein bouncer is necessary and sufficient for species-specific fertilization. Science 361:1029–1033

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heslop-Harrison J (1975) The Croonian lecture 1974. The physiology of the pollen grin surface. Proc R Soc London Ser B 190:275–299

    CAS  Google Scholar 

  • Heslop-Harrison J (1979) Pollen-stigma interaction in grasses: a brief review. New Zealand J Bot 17:537–546

    Google Scholar 

  • Heslop-Harrison J, Heslop-Harrison Y (1986) Pollen tube chemotropism: fact or delusion? In: Cresti M, Dallai R (eds) Biology of reproduction and cell motility in plants and animals. University of Siena, Siena, pp 169–174

    Google Scholar 

  • Heslop-Harrison J, Heslop-Harrison Y (1987) Pollen-stigma interaction in the grasses. In: Soderstrom TR et al (eds) Grass systematics and evolution. Smithsonian Institution Press, Washington, DC, pp 133–142

    Google Scholar 

  • Heslop-Harrison Y, Shivanna KR (1977) The receptive surface of the angiosperm stigma. Ann Bot 41:1233–1258

    Google Scholar 

  • Higashiyama T, Hamamura Y (2008) Gametophytic pollen tube guidance. Sex Plant Repro 21:17–26

    Google Scholar 

  • Higashiyama T, Takeuchi H (2015) The mechanism and key molecules involved in pollen tube guidance. Ann Rev Plant Bio 66:393–413

    CAS  Google Scholar 

  • Higashiyama T, Yang WC (2017) Gametophytic pollen tube guidance: attractant peptides, gametic controls, and receptors. Plant Physiol 173:112–121

    CAS  PubMed  Google Scholar 

  • Higashiyama T, Kuroiwa H, Kawano S, Kuroiwa T (1998) Guidance in vitro of the pollen tube to the naked embryo sac of Torenia fournieri. Plant Cell 10:2019–2032

    CAS  PubMed  PubMed Central  Google Scholar 

  • Higashiyama T, Yabe S, Sasaki N et al (2001) Pollen tube attraction by the synergid cell. Science 293:1480–1483

    CAS  PubMed  Google Scholar 

  • Hogenboom NG (1975) Incompatibility and incongruity. Two different mechanisms for the non-functioning of intimate partner relationships. Proc R Soc Ser B 188:361–375

    Google Scholar 

  • Hulskamp M et al (1995a) Identification of genes required for pollen-stigma recognition in Arabidopsis thaliana. Plant J 8:703–714

    CAS  PubMed  Google Scholar 

  • Hulskamp M et al (1995b) Genetic evidence for a long range activity that directs pollen tube guidance in Arabidopsis. Plant Cell 7:57–64

    PubMed  PubMed Central  Google Scholar 

  • Ikeda S et al (1997) An aquaporin-like gene in the Brassica self-incompatibility response. Science 276:1564–1566

    CAS  PubMed  Google Scholar 

  • Iwanami Y (1959) Physiological studies of pollen. J Yokohama Munici Univ 116:1–137

    Google Scholar 

  • Johri BM, Ambegoakar KB, Srivastava PS (1992) Comparative embryology of angiosperms. Springer, Berlin

    Google Scholar 

  • Kanaoka MM et al (2011) Identification and characterization of TcCRP1, a pollen tube attractant from Torenia concolor. Ann Bot 108:739–747

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kanta K, Rangaswamy NS, Maheshwari P (1962) Test tube fertilization in a flowering plant. Nature 194:1214–1217

    Google Scholar 

  • Kasahara RD et al (2005) MYB98 is required for pollen tube guidance and synergid cell differentiation in Arabidopsis. Plant Cell 17:2981–2992

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S, Mollet J-C, Dong J et al (2003) Chemocyanin, a small basic protein from the lily stigma, induces pollen tube chemotropism. Proc Natl Acad Sci U S A 100:16125–16130

    CAS  PubMed  PubMed Central  Google Scholar 

  • Knox RB, Heslop-Harrison J (1970) Pollen-wall proteins: localization and enzymic activity. J Cell Sci 6:1–27

    CAS  PubMed  Google Scholar 

  • Knox RB, Willing RR, Ashford AE (1972) Pollen-wall proteins; role as recognition substances in interspecific incompatibility in poplars. Nature 237:381–383

    CAS  Google Scholar 

  • Knox RB et al (1975) Pollen wall proteins: localization and characterization of gametophytic and sporophytic fractions. In: Duckett JG, Racey PA (eds) The biology of the male gamete, Biological journal of the Linnean society 7: (Suppl 1). Academic Press for the Linnean Society of London, London, pp 177–187

    Google Scholar 

  • Knox RB et al (1976) Cell recognition in plants: determinants of the stigma surface and their pollen interactions. Proc Natl Acad Sci U S A 73:2788–2792

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kranz E (1997) In vitro fertilization with single isolated gametes. In: Shivanna KR, Sawhney VK (eds) Pollen biotechnology for crop production and improvement. Cambridge University Press, New York, pp 377–391

    Google Scholar 

  • Kranz E, Lorz H (1993) In vitro fertilization with isolated single gametes result in zygotic embryogenesis. Plant Cell 5:739–746

    PubMed  PubMed Central  Google Scholar 

  • Kranz E, Dresselhaus T (1996) In vitro fertilization with isolated higher plant gametes. Trends Plant Sci 1:82–89

    Google Scholar 

  • Kranz E et al (2008) In vitro fertilization with isolated higher plant gametes. Methods Mol Biol 427:51–69

    CAS  PubMed  Google Scholar 

  • Kroh M, Helsper JPF (1974) Transmitting tissue and pollen tube growth. In: Linskens HF (ed) Fertilization in flowering plants. North Holland Publishing, Amsterdam, pp 165–175

    Google Scholar 

  • Kumar S, Hecht A (1970) Studies on growth and utilization of carbohydrates by pollen tubes and callose development in self-incompatible Oenothera organensis. Biol Plant 12:41–46

    CAS  Google Scholar 

  • Lord EM (2001) Adhesion molecules in lily pollination. Sex Plant Repro 14:57–62

    CAS  Google Scholar 

  • Lord EM, Russell RD (2002) The mechanism of pollination and fertilization in plants. Ann Rev Cell Dev Biol 18:81–105

    CAS  Google Scholar 

  • Losada JM et al (2014) Arabinogalactan proteins mark stigmatic receptivity in the protogynous flowers of Magnolia virginiana. Am J Bot 101:1963–1975

    PubMed  Google Scholar 

  • Lush WM et al (1998) Directional guidance of Nicotiana alata pollen tubes in vitro and on the stigma. Plant Physiol 118:733–741

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maheshwari P (1950) An introduction to the embryology of angiosperm. McGraw- Hill, New York

    Google Scholar 

  • Maheshwari P (1963) Recent advances in the embryology of angiosperms. International Society of Plant Morphologists/Delhi University, Delhi

    Google Scholar 

  • Marton ML et al (2005) Micropylar pollen tube guidance by egg apparatus1 of maize. Science 307:573–576

    CAS  PubMed  Google Scholar 

  • Marton ML et al (2012) Overcoming hybridization barriers by the secretion of the maize pollen tube attractant ZmEA1 from Arabidopsis ovules. Curr Bio 22:1194–1198

    CAS  Google Scholar 

  • Maruyama D et al (2015) Rapid elimination of a persistent synergid through a cell fusion mechanism. Cell 161:907–918

    CAS  PubMed  Google Scholar 

  • Mascarenhas JP, Machlis L (1962) Chemotropic response of the pollen of Antirrhinum majus to calcium. Nature 196:292–293

    CAS  Google Scholar 

  • Mascarenhas JP, Machlis L (1964) Chemotropic response of the pollen of Antirrhinum majus to calcium. Plant Physiol 39:70–77

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mizukami AG, Inatsugi R, Jiao J et al (2016) The AMOR arabinogalactan sugar chain induces pollen-tube competency to respond to ovular guidance. Curr Biol 26:1091–1097

    CAS  PubMed  Google Scholar 

  • Mizuta Y, Higashiyama T (2018) Chemical signalling for pollen tube guidance at a glance. J Cell Sci 131:jcs208447. https://doi.org/10.1242/jcs.208447

    Article  CAS  PubMed  Google Scholar 

  • Mori T et al (2006) GENERATIVE CELL SPECIFIC 1 is essential for angiosperm fertilization. Nat Cell Biol 8:64–71

    CAS  PubMed  Google Scholar 

  • Mulcahy DL (1979) Rise of the angiosperm: genecological factor. Science 206:20–23

    CAS  PubMed  Google Scholar 

  • Mulcahy DL (1984) Manipulation of gametophytic populations. In: Lange W, Zeven AC, Hogenboom C (eds) Efficiency in plant breeding. PUDOC, Wageningen

    Google Scholar 

  • Mulcahy DL, Mulcahy GB (1987) Induced pollen tube directionality. Am J Bot 74:1458–1459

    Google Scholar 

  • Ohnishi Y, Hoshino R, Okamoto T (2014) Dynamics of male and female chromatin during karyogamy in rice zygotes. Plant Physiol 165:1533–1543

    CAS  PubMed  PubMed Central  Google Scholar 

  • Okamoto T (2011) In vitro fertilization with Rice gametes: production of zygotes and embryo culture. In: Thorpe T, Yeung E (eds) Plant embryo culture. Methods in molecular biology, Methods and protocols, vol 710. Humana Press, Totowa. https://doi.org/10.1007/978-1-61737-988-8_2

    Chapter  Google Scholar 

  • Okamoto T, Kranz E (2005) In vitro fertilization – a tool to dissect cell specification from a higher plant zygote. Curr Sci 89:1861–1869

    CAS  Google Scholar 

  • Okuda S et al (2009) Defensin-like polypeptide LUREs are pollen tube attractants secreted from synergid cells. Nature 458:357–361

    CAS  PubMed  Google Scholar 

  • Palanivelu R, Preuss D (2006) Distinct short-range ovule signals attract or repel Arabidopsis thaliana pollen tubes in vitro. BMC Plant Biol 6:7. https://doi.org/10.1186/1471-2229-6-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Preuss D et al (1993) A conditional mutation eliminates surface components from Arabidopsis pollen and disrupts cell signalling during fertilization. Genes Dev 7:974–985

    CAS  PubMed  Google Scholar 

  • Punwani JA, Rabiger DS, Drews GN (2007) MYB98 positively regulates a battery of synergid-expressed genes encoding filiform apparatus–localized proteins. Plant Cell 19:2557–2568

    CAS  PubMed  PubMed Central  Google Scholar 

  • Punwani JA, Rabiger DS, Lloyd A, Drews GN (2008) The MYB98 subcircuit of the synergid gene regulatory network includes genes directly and indirectly regulated by MYB98. Plant J 55:406–414

    CAS  PubMed  Google Scholar 

  • Qui Y-L et al (2004) Isolation of two populations of sperm cells from the pollen tube of tobacco. Acta Bot Sinica 46(719):723

    Google Scholar 

  • Rangaswamy NS, Shivanna KR (1967) Induction of gamete compatibility and seed formation in axenic cultures of a diploid self-incompatible species of Petunia. Nature 216:937–939

    Google Scholar 

  • Rangaswamy NS, Shivanna KR (1969) Test tube fertilization in Dicranostigma franchetianum (Prain) Fedde. Curr Sci 38:257–259

    Google Scholar 

  • Rubinstein AL et al (1995) Pex 1, a pollen-specific gene with an extensin like domain. Proc Natl Acad Sci U S A 92:3086–3090

    CAS  PubMed  PubMed Central  Google Scholar 

  • Russell SD (1982) Fertilization in Plumbago zeylanica: entry and discharge of the pollen tube in the embryo sac. Can J Bot 60:2219–2230

    Google Scholar 

  • Russell SD (1993) The egg cell: development and role in fertilization and early embryogenesis. Plant Cell 5:1349–1359

    PubMed  PubMed Central  Google Scholar 

  • Sanchez AM et al (2004) Pistil factors controlling pollination. Plant Cell 16:S98–S106

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sanders LC, Lord EM (1992) Dynamic role for the stylar matrix in pollen tube extension. Intl Rev Cytol 140:297–318

    Google Scholar 

  • Sasaki D et al (2015) Live imaging and laser disruption reveal the dynamics and cell–cell communication during Torenia fournieri female gametophyte development. Plant Cell Physiol 56:1031–1041

    Google Scholar 

  • Sastri DC, Shivanna KR (1979) Role of pollen-wall proteins in intraspecific incompatibility in Saccharum. Phytomorphology 29:324–330

    Google Scholar 

  • Schmid CE, Schroeder N, Muller DG (1994) Female gamete membrane glycoproteins potentially involved in gamete recognition in Ectocarpus siliculosus (Phaeophyceae). Plant Sci 102:61–67

    CAS  Google Scholar 

  • Shivanna KR (1979) Recognition and rejection phenomena during pollen-pistil interaction. Proc Indian Acad Sci 88B:115–141

    Google Scholar 

  • Shivanna KR (2003) Pollen biology and biotechnology. Science Publishers, Enfield

    Google Scholar 

  • Shivanna KR, Johri BM (1985) The angiosperm pollen: structure and function. Wiley Eastern, New Delhi

    Google Scholar 

  • Shivanna KR, Rangaswamy NS (1997) Fertilization in flowering plants – what is new? Curr Sci 72:300–301

    Google Scholar 

  • Shivanna KR, Rajesh T (2014) Reproductive biology of flowering plants: a manual. Springer India, New Delhi

    Google Scholar 

  • Shivanna KR, Xu H, Taylor P, Knox RB (1987) Isolation of sperms from pollen tubes of flowering plants during fertilization. Plant Physiol 87:647–650

    Google Scholar 

  • Sprunck S et al (2012) Egg cell–secreted EC1 triggers sperm cell activation during double fertilization. Science 338:1093–1097

    CAS  PubMed  Google Scholar 

  • Takeuchi H, Higashiyama T (2011) Attraction of tip-growing pollen tubes by the female gametophyte. Curr Opin Plant Biol 14:614–621

    CAS  PubMed  Google Scholar 

  • Takeuchi H, Higashiyama T (2016) Tip-localized receptors control pollen tube growth and LURE sensing in Arabidopsis. Nature 531:245–248

    CAS  PubMed  Google Scholar 

  • Tejaswani, Ganeshaiah KN, Shaanker U (2001) Sexual selection in plants: the process, components, and significance. Proc Natl Acad Sci, New Delhi B 67:423–432

    Google Scholar 

  • Tekleyohans DG et al (2017) Patterning the female gametophyte of flowering plants. Plant Physio 173:122–129

    CAS  Google Scholar 

  • Tian HQ, Russell SD (1997) Micromanipulation of male and female gametes of Nicotiana tabacum: I. isolation of gametes. Plant Cell Rep 16:555–560

    CAS  PubMed  Google Scholar 

  • Uchiumi T et al (2007) Establishment of an in vitro fertilization system in rice (Oryza sativa) L. Planta 226:581–589

    CAS  PubMed  Google Scholar 

  • van der Meer IM et al (1992) Antisense inhibition of flavonoid biosynthesis in Petunia anthers results in male sterility. Plant Cell 4:253–262

    PubMed  PubMed Central  Google Scholar 

  • Wang T et al (2016) A receptor heteromer mediates the male perception of female attractants in plants. Nature 531:241–244

    CAS  PubMed  Google Scholar 

  • Weterings K, Russell SD (2004) Analysis of the fertilization process. Plant Cell 16:S107–S118

    CAS  PubMed  PubMed Central  Google Scholar 

  • Whitehouse HLK (1950) Multiple allelomorph incompatibility of pollen and style in the evolution of angiosperms. Ann Bot 1:199–216

    Google Scholar 

  • Wilson NF et al (1997) The Chlamydomonas mating type plus fertilization tubule, a prototypic cell fusion organelle: isolation, characterization, and in vitro adhesion to mating type minus gametes. J Cell Biol 137:1537–1553

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wolters-Arts M et al (1998) Lipids are required for directional pollen tube growth. Nature 392:818–821

    CAS  PubMed  Google Scholar 

  • Wu H-M, Wang H, Cheung AY (1995) A pollen tube stimulating glycoprotein is deglycosylated by pollen tubes and displays a glycosylation gradient in the flower. Cell 82:393–403

    Google Scholar 

  • Zenkteler M (1967) Test tube fertilization of ovules in Melandrium album Mill. With pollen grains of several species of Caryophyllaceae. Experientia 23:775–777

    CAS  PubMed  Google Scholar 

  • Zenkteler M (1990) In vitro fertilization and wide hybridization in higher plants. Cri Rev Plant Sci 9:267–279

    Google Scholar 

  • Zenkteler M, Bagniewska-Zadworna A (2001) Distant in vitro pollination of ovules. In: Rangaswamy NS (ed) Phytomorphology Golden Jubilee Issue. International Society of Plant Morphologists, Delhi, pp 225–235

    Google Scholar 

  • Zheng Y-Y et al (2018) The long journey of pollen tube in the pistil. Int J Mol Sci 19:3529. https://doi.org/10.3390/ijms19113529

    Article  CAS  PubMed Central  Google Scholar 

  • Zhong S et al (2019) Cysteine-rich peptides promote interspecific genetic isolation in Arabidopsis. Science 364. https://doi.org/10.1126/science.aau9564

  • Zinkl GM, Preuss D (2000) Dissecting Arabidopsis pollen-stigma interactions reveals novel mechanisms that confer mating specificity. Ann Bot 85:15–21

    Google Scholar 

  • Zinkl GM et al (1999) Pollen-stigma adhesion in Arabidopsis: a species-specific interaction mediated by hydrophobic molecules in the pollen exine. Development 126:5431–5440

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Profuse thanks to Rajesh Tandon for line diagrams and Chandan Barman for Fig. 4.2.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shivanna, K.R. (2020). Pollen-Pistil Interaction and Fertilization. In: Tandon, R., Shivanna, K., Koul, M. (eds) Reproductive Ecology of Flowering Plants: Patterns and Processes. Springer, Singapore. https://doi.org/10.1007/978-981-15-4210-7_4

Download citation

Publish with us

Policies and ethics