Skip to main content
Log in

Overexpression of an SKn-dehydrin gene from Eucalyptus globulus and Eucalyptus nitens enhances tolerance to freezing stress in Arabidopsis

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

This work contributes in the identification and understanding of dehydrin genes and their function in the mechanisms of cold tolerance in eucalypt species.

Abstract

Dehydrins play a fundamental role in plant response and adaptation to abiotic stresses, having an important role in seed desiccation, response to abscisic acid, low temperatures, drought and salinity conditions. Eucalyptus nitens has a greater tolerance to cold than Eucalyptus globulus, which in part can be due to the role of dehydrins present in this species. This work reports the identification of four DHN genes in E. nitens and examines their response under low temperature, comparing them to those previously described in E. globulus. Transcript abundance of dehydrins increased when plants were cold acclimated, being higher in a freezing-resistant family of E. nitens than in a freezing-sensitive family. The relative levels of dhns in E. nitens were higher than the corresponding of E. globulus under the same conditions. The analysis of the promoter region for the four Enidhns showed that they contained several cold-or dehydration inducible cis elements, such as ABRE, MYC and CRT. The analyzes in the genomic sequence of dhn from E. globulus and E. nitens, together with the results of transcript abundance under cold acclimation, can be in part explained by differences found at the cis elements in the several DHN promoters studied. The most responsive gene to cold tolerance in both species was DHN2, which was used to obtain transgenic Arabidopsis thaliana containing either the coding region or the putative promoter. The EniDHN2 lines had higher transcript abundance than the A. thaliana with the EuglDHN2, although in both cases the transgenic lines had a higher survival rate to cold than the untransformed A. thaliana. In addition the EniDHN2 putative promoter drive induced higher expression levels of the gene (gus) marker than the one of E. globulus, when exposed to cold temperatures. Therefore, we hypothesize that the putative promoter of EniDHN2 and its coding region has a key role in conferring cold tolerance to this species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allagulova CR, Gimalov FR, Shakirova FM, Vakhitov VA (2003) The plant dehydrins: structure and putative functions. Biochemistry 68:945–951

    CAS  PubMed  Google Scholar 

  • Amolkumar S, Arun S (2008) Signal transduction during cold stress in plant. Physiology and Molecular Biology of Plant 14:69–79

    Article  Google Scholar 

  • Brini F, Yamamoto A, Jlaiel L, Takeda S, Hobo T, Dinh HQ, Hattori T, Masmoudi K, Hanin M (2011) Pleiotropic effects of the wheat dehydrin DHN-5 on stress responses in Arabidopsis. Plant Cell Physiol 52:676–688

    Article  CAS  PubMed  Google Scholar 

  • Campbell SA, Close TJ (1997) Dehydrins: genes, proteins, and associations with phenotypic traits. New Phytol 137:61–74. doi:10.1046/j.1469-8137.1997.00831.x

    Article  CAS  Google Scholar 

  • Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Report 11(2):113–116

    Article  CAS  Google Scholar 

  • Choi DW, Zhu B, Close TJ (1999) The barley (Hordeum vulgare L.) dehydrin multigene family: sequences, allele types, chromosome assignments, and expression characteristics of 11 Dhn genes of cv Dicktoo. Theor Appl Genet 98:1234–12478

    Article  CAS  Google Scholar 

  • Close TJ (1996) Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins. Physiologia Plant 97:795–803

    Article  CAS  Google Scholar 

  • Close TJ (1997) Dehydrins: a commonality in the response of plants to dehydration and low temperature. Plant Physiol 100:291–296

    Article  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Costa e Silva F, Shvaleva A, Broetto F, Ortunño MF, Rodrigues ML, Almeida MH, Chaves MM, Pereira JS (2008) Acclimation to shortterm low temperatures in two Eucalyptus globulus clones with contrasting drought resistance. Tree Physiol 29:77–86

    Article  PubMed  Google Scholar 

  • Curtis M, Grossniklaus U (2003) A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol 133:462–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danyluk J, Perron A, Houde M, Limin A, Fowler B, Benhamou N et al (1998) Accumulation of an acidic dehydrin in the vicinity of the plasma membrane during cold acclimation of wheat. Plant Cell Online 10:623–638. doi:10.1105/tpc.10.4.623

    Article  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure from small quantities of fresh leaf tissues. Phytochem Bull 19:11–15

    Google Scholar 

  • Fernández M, Valenzuela S, Balocchi C (2006) RAPD and freezing resistance in Eucalyptus globulus. Electron J Biotech 9:303–309

    Article  Google Scholar 

  • Fernández M, Valenzuela S, Arora R, Chen K (2012a) Isolation and characterization of three cold acclimation-responsive dehydrin genes from Eucalyptus globulus. Tree Genetic Genomes 8:149–162

    Article  Google Scholar 

  • Fernández M, Valenzuela S, Barraza H, Latorre J, Neira V (2012b) Photoperiod, temperature and water deficit differentially regulate the expression of four dehydrin genes from Eucalyptus globulus. Trees 26:1483–1493

    Article  Google Scholar 

  • Fernández M, Villarroel C, Balbontín C, Valenzuela S (2010) Validation of reference genes for real-time qRT-PCR normalization during cold acclimation in Eucalyptus globulus. Trees Struct Funct 24(6):1109–1116

    Article  Google Scholar 

  • Fernández M, Troncoso V, Valenzuela S (2015) Transcriptome Profile in Response to Frost Tolerance in Eucalyptus globulus. Plant Mol Biol Report 33(5):1472–1485

    Article  Google Scholar 

  • Fowler S, Cook D, Thomashow MF (2005) The CBF cold response pathwat. In: Jenks MA, Hasegawa PM (eds) Plant Abiotic Stress. Blackwell publishing, Oxford, pp 71–99

    Chapter  Google Scholar 

  • Gilmour SJ, Fowler SG, Thomashow MF (2004) Arabidopsis transcriptional activators CBF1, CBF2 and CBF3 have matching functional activities. Plant Mol Biol 54:767–781

    Article  CAS  PubMed  Google Scholar 

  • Guzmán M (2009) Análisis funcional y estructural del promotor del gen CBF-1 de Eucalyptus globulus en la respuesta a estrés por frío. Universidad de Chile, Santiago

    Google Scholar 

  • Hara M, Terashima S, Fukaya T, Kuboi T (2003) Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco. Planta 217:290–298

    CAS  PubMed  Google Scholar 

  • Hara M, Fujinaga M, Kuboi T (2004) Radical scavenging activity and oxidative modification of citrus dehydrin. Plant Physiol Biochem 42:657–662

    Article  CAS  PubMed  Google Scholar 

  • Hara M, Kondo M, Kato T (2013) A KS-type dehydrin and its related domains reduce Cu-promoted radical generation and the histidine residues contribute to the radical-reducing activities. J Exp Bot 64:1615–1624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison S, Mott E, Parsley K, Aspinall S, Gray J, Cottage A (2006) A rapid and robust method of identifying transformed Arabidopsis thaliana seedlings following floral dip transformation. Plant Methods 2:19

    Article  PubMed  PubMed Central  Google Scholar 

  • Houde M, Dallaire S, N’Dong D, Sarhan F (2004) Overexpression of the acidic dehydrin WCOR410 improves freezing tolerance in transgenic strawberry leaves. Plant Biotechnol J 2:381–387

    Article  CAS  PubMed  Google Scholar 

  • Keller G, Bang Cao P, San Clemente H, Kayal WE, Marque C, Teulières C (2013) Transcript profiling combined with functional annotation of 2662 ESTs provides a molecular picture of Eucalyptus gunnii cold acclimation. Trees 27:1713–1735

    Article  Google Scholar 

  • Kim SY, Nam KH (2010) Physiological roles of ERD10 in abiotic stresses and seed germination of Arabidopsis. Plant Cell Rep 29:203–209

    Article  CAS  PubMed  Google Scholar 

  • Koag MC, Fenton RD, Wilkens S, Close TJ (2003) The binding of Maize DHN1 to lipid vesicles. Gain of structure and lipid specificity. Plant Physiol 131:309–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komarnytsky S, Borisjuk N (2003) Functional analysis of promoter elements in plants. In: Setlow JK (ed) Genetic engineering: principles and methods, vol 25. Springer US, Boston, MA, pp 113–141. doi:10.1007/978-1-4615-0073-5_6

    Chapter  Google Scholar 

  • Kosová K, Vítámvás P, Prásil IT (2007) The role of dehydrins in plant response to cold. Biol Plant 51:601–617

    Article  Google Scholar 

  • Lång V, Palva ET (1992) The expression of a rab-related gene, rab18, is induced by abscisic acid during the cold acclimation process of Arabidopsis thaliana (L.) Heynh. Plant Mol Biol 20(5):951–962

    Article  PubMed  Google Scholar 

  • Layton B, Boyd M, Bitonti B, Norman M, Dollahon R, Balsamo R (2010) Dehydration- induced expression of a 31-kDa dehydrin in Polypodium polypodioides (Polypodiaceae) may enable large, reversible deformation of cell walls. Am J Bot 97:535–544

    Article  CAS  PubMed  Google Scholar 

  • Lois R, Dietrich A, Hahlbrock K, Schulz W (1989) Aphenylalanine ammonia-lyase gene from parsley: structure, regulation and identification of elicitor and light responsive cis-acting elements. EMBO J 8:1641–1648

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maruyama K, Todaka D, Mizoi J, Yoshida T, Kidokoro S, Matsukura S, Takasaki H, Sakurai T, Yamamoto YY, Yoshiwara K, Kojima M, Sakakibara H, Shinozaki K, Yamaguchi-shinozaki K (2012) Identification of Cis-Acting Promoter Elements in Cold- and Dehydration-Induced Transcriptional Pathways in Arabidopsis, Rice, and Soybean. DNA Res 19:37–49

    Article  CAS  PubMed  Google Scholar 

  • Moraga P, Escobar R, Valenzuela S (2006) Resistance to freezing in three Eucalyptus globulus Labill subspecies. Electronic J of Biotech 9:310–314

    Article  Google Scholar 

  • Muñoz-Mayor A, Pineda B, García-Abellán J, Antón T, García-Sogo B, Sanchez-Bel P, Flores F, Atarés A, Angosto T, Pintor-Toro J, Moreno V, Bolarin M (2012) Overexpression of dehydrin tas14 gene improves the osmotic stress imposed by drought and salinity in tomato. J Plant Physiol 169:459–468

    Article  PubMed  Google Scholar 

  • Nash J, Luehrsen KR, Walbot V (1990) Bronze-2 gene of maize: reconstruction of wild-type allele and analysis of transcription and splicing. Plant Cell 2:1039–1049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navarro M, Ayax C, Martinez Y, Laur J, Kayal W, Marque C, Teulières C (2011) Two EguCBF1 genes overexpressed in Eucalyptus display a different impact on stress tolerance and plant development. Plant Biotechnol J 9:50–63

    Article  CAS  PubMed  Google Scholar 

  • Nylander M, Svensson J, Palva T, Welin BV (2001) Stress-induced accumulation and tissue-specific localization of dehydrins in Arabidopsis thaliana. Plant Mol Biol 45:263–279

    Article  CAS  PubMed  Google Scholar 

  • Pastuglia M, Rody D, Dumas C, Cock JM (1997) Rapid induction by wounding and bacterial infection of an S gene family receptor-like kinase gene Brasica oleracea. Plant Cell 9:49–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perdiguero P, Collada C, Soto A (2014) Novel dehydrins lacking complete K-segments in Pinaceae, the exception rather than the rule. Front. Plant Sci. 5:682. doi:10.3389/fpls.2014.00682

    Article  PubMed  PubMed Central  Google Scholar 

  • Pichersky E, Bernatzky R, Tanksley SD, Breidenbach RB, Kausch AP, Cashmore AR (1985) Molecular characterization and genetic mapping of two clusters of genes encoding chlorophyll a/b-biding proteins in Lycopersicon esculentum (tomato). Gene 40:247–258

    Article  CAS  PubMed  Google Scholar 

  • Puhakainen T, Hess MW, Mäkelä P, Svensson J, Heino P, Palva T (2004) Overexpression of multiple dehydrin genes enhances tolerance to freezing stress in Arabidopsis. Plant Mol Biol 54:743–753

    Article  CAS  PubMed  Google Scholar 

  • Qin F, Sakuma Y, Li J, Liu Q, Li YQ, Shinozaki K, Yamaguchi-Shinozaki K (2004) Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays L. Plant Cell Physiol 45:1042–1052

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen-Poblete S, Valdes J, Gamboa MC, Valenzuela PDT, Krauskopf E (2008) Generation and analysis of an Eucalyptus globulus cDNA library constructed from seedlings subjected to low temperature conditions. E J Biotechnol 11(2):14

    Google Scholar 

  • Robertson M, Cuming AC, Chandler PM (1995) Sequence analysis and hormonal regulation of a dehydrin promoter from barley, Hordeum vulgare. Physiol Plant 94:470–478

    Article  CAS  Google Scholar 

  • Rodríguez EM, Svensson JT, Malatrasi EM, Choi DW, Close ETJ (2005) Barley Dhn13 encodes a KS-type dehydrin with constitutive and stress responsive expression. Theor Appl Genet 110:852–858

    Article  PubMed  Google Scholar 

  • Rorat T (2006) Plant dehydrins tissue location, structure and function. Cell Mol Biol Lett 11:536–556

    Article  CAS  PubMed  Google Scholar 

  • Rouster J, Leah R, Mundy J, Cameron-Mills V (1997) Identification of a methyl jasmonate-responsive region in the promoter of a lipoxygenase 1 gene expressed in barley grain. Plant J 11:513–523

    Article  CAS  PubMed  Google Scholar 

  • Sakai T, Takahashi Y, Nagata T (1996) Analysis of the promoter of the auxin-inducible gene, parC, of tobacco. Plant Cell Physiol 23:906–913

    Article  Google Scholar 

  • Sharabi-Schwager M, Lers A, Samach A, Guy CL, Porat R (2010) Overexpression of the CBF2 transcriptional activator in Arabidopsis delays leaf senescence and extends plant longevity. J Exp Bot 61:261–273

    Article  CAS  PubMed  Google Scholar 

  • Shen Y, Tang MJ, Hu YL, Lin ZP (2004) Isolation and characterization of a dehydrin-like gene from drought-tolerant Boea crassifolia. Plant Sci 166:1167–1175

    Article  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3:217–223

    Article  CAS  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410–417

    Article  CAS  PubMed  Google Scholar 

  • Stockinger EJ, Gilmour SJ, Thomashow MF (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci U S A 94:1035–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Straub P, Shen Q, Ho D (1994) Structure and promoter analysis of an ABA-and stress-regulated barley gene, HVA1. Plant Mol Biol 26:617–630

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Lin HH (2010) Role of plant dehydrins in antioxidation mechanisms. Biologia 65:755–759

    Article  CAS  Google Scholar 

  • Teulieres C, Marque C (2007) Eucalyptus. In: Pua EC, Davey MR (eds) Biotechnology in agriculture and forestry 60, Transgenic Crops V. Springer, New York, pp 387–402

  • Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu. Rev Plant Physiol Plant Mol Biol 50:571–599

    Article  CAS  PubMed  Google Scholar 

  • Thompson JE, Legge RL, Barber RF (1987) The role of free radicals in senescence and wounding. New Phytol 105:317–344

    Article  CAS  Google Scholar 

  • Turnbull JW, Eldridge KG (1984) The natural environment of Eucalyptus as the basis for selecting frost-resistant species. In: Proceedings, IUFRO Colloque international sur les Eucalyptus résistants au froid, Bordeaux, Paris, pp 43–62

  • Viret JF, Mabrouk Y, Bogorad L (1994) Transcriptional photoregulation of cell-type-preferred expression of maize rbcS-m3: 3' and 5' sequences are involved. Proc Natl Acad Sci U S A 91(18):8577–8581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vornam B, Gailing O, Derory J, Plomion C, Kremer A, Finkeldey R (2011) Characterization and natural variation of a dehydrin gene in Quercus petraea (Matt.) Liebl. Plant Biol 13:881–887

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Xu H, Zhu H, Tao Y, Zhang G, Zhang L, Zhang C, Zhang Z, Ma Z (2014) Classification and expression diversification of wheat dehydrin genes. Plant Sci 214:113–120

    Article  CAS  PubMed  Google Scholar 

  • Welling A, Rinne P, Viherä-Aarnio A, Kontunen-Soppela S, Heino P, Tapio Palva E (2004) Photoperiod and temperature differentially regulate the expression of two dehydrin genes during overwintering of birch (Betula pubescens). J Exp Bot 55:507–516

    Article  CAS  PubMed  Google Scholar 

  • Wise M (2003) Leaping to conclusions: a computational reanalysis of late embryogenesis abundant proteins and their possible roles. BMC Bioinformatics 4:52

    Article  PubMed  PubMed Central  Google Scholar 

  • Xing X, Liu Y, Kong X, Liu Y, Li D (2011) Overexpression of a maize dehydrin gene, ZmDHN2b, in tobacco enhances tolerance to low temperature. Plant Growth Regul 65:109–118

    Article  CAS  Google Scholar 

  • Xu H, Yang Y, Xie L, Li X, Feng C (2014) Involvement of multiple types of dehydrins in the freezing response in Loquat (Eriobotrya japonica). PLoS One 9:87575

    Article  Google Scholar 

  • Zhu W, Zhang D, Lu X, Zhang L, Yu Z, Lv H, Zhang H (2014) Characterisation of an SKn-type dhydin promoter from wheat and its responsiveness to various abiotic and biotic stresses. Plant Mol Biol Rep 32:664–678

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the project FONDECYT 1130780 from CONICYT and Genómica Forestal SA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sofía Valenzuela.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by I. Porth.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aguayo, P., Sanhueza, J., Noriega, F. et al. Overexpression of an SKn-dehydrin gene from Eucalyptus globulus and Eucalyptus nitens enhances tolerance to freezing stress in Arabidopsis . Trees 30, 1785–1797 (2016). https://doi.org/10.1007/s00468-016-1410-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-016-1410-9

Keywords

Navigation