Skip to main content
Log in

Overexpression of three novel CBF transcription factors from Eucalyptus globulus improves cold tolerance on transgenic Arabidopsis thaliana

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

This work contributes to the identification and understanding of CBF genes and their putative role in the mechanisms of cold tolerance in eucalypt species.

Abstract

Three new CBF genes were isolated from E. globulus-denominated EglCBF1a, c, and d, coding for proteins of 220, 229, and 196 amino acids, respectively. The sequence analysis showed that the three predicted proteins contain an AP2 DNA-binding domain and two CBF signature sequences. Phylogenetic analysis demonstrated that these proteins were highly similar to those described in E. grandis and E. gunnii. Transcript abundance analysis in three different E. globulus genotypes exposed to a cold acclimation treatment showed that these CBF genes were highly related to the acclimation process and presented the highest relative expression at freezing temperatures. EglCBF1a showed the highest expression level (1311-fold change) in the cold-tolerant genotype (R1). EglCBF1a and d genes were induced by chilling and freezing temperatures, while EglCBF1c was constitutively expressed, increasing its transcript level when plants were exposed to freezing temperatures. The constitutive overexpression of each E. globulus CBF gene in Arabidopsis plants induces the endogenous CBF regulon gene expression of Arabidopsis and enhanced its tolerance to freezing, with additional phenotypic effects including growth inhibition and delayed flowering. These results indicate that the three EglCBF genes analyzed play important roles under cold acclimation processes in E. globulus and are involved in the signaling pathway of cold stress and the freezing tolerance phenotype observed on specific genotypes of this species and in transgenic Arabidopsis lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Achard P, Gong F, Cheminant S, Alioua M, Hedden P, Genschik P (2008) The cold-inducible CBF1 factor–dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism. Plant Cell 20(8):2117–2129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Almeida M, Chaves M, Silva J (1994) Cold acclimation in eucalypt hybrids. Tree Physiol 14(7-8-9):921–932

    Article  PubMed  Google Scholar 

  • Azar S, SanClemente H, Marque G, Dunand C, Marque C, Teulières C (2011) Bioinformatic prediction of the AP2/ERF family genes in Eucalyptus grandis: focus on the CBF family. BMC Proc 5 (Suppl 7):P165

    Article  PubMed Central  Google Scholar 

  • Benedict C, Jeffrey S, Rengong M, Yongjian C, Rishikesh B, Norman P, Chad E, Tony H, Vaughan H (2006) The CBF1-dependent low temperature signalling pathway, regulon and increase in freeze tolerance are conserved in Populus spp. Plant Cell Env 29(7):1259–1272

    Article  CAS  Google Scholar 

  • Bonawitz N, Soltau W, Blatchley M, Powers B, Hurlock A, Seals L, Weng J-K, Stout J, Chapple C (2012) REF4 and RFR1, subunits of the transcriptional coregulatory complex mediator, are required for phenylpropanoid homeostasis in Arabidopsis. J Biol Chem 287(8):5434–5445

    Article  CAS  PubMed  Google Scholar 

  • Byun M, Lee J, Cui L, Kang Y, Oh T, Park H, Lee H, Kim W (2015) Constitutive expression of DaCBF7, an Antarctic vascular plant Deschampsia antarctica CBF homolog, resulted in improved cold tolerance in transgenic rice plants. Plant Sci 236:61–74

    Article  CAS  PubMed  Google Scholar 

  • Canella D, Gilmour S, Kuhn L, Thomashow M (2010) DNA binding by the Arabidopsis CBF1 transcription factor requires the PKKP/RAGRxKFxETRHP signature sequence. Biochim et Biophy Acta (BBA) Gene Regul Mech 1799(5–6):454–462

    Article  CAS  Google Scholar 

  • Cao PB, Azar S, SanClemente H, Mounet F, Dunand C, Marque G, Marque C, Teulières C (2015) Genome-wide analysis of the AP2/ERF family in eucalyptus grandis: an intriguing over-representation of stress-responsive DREB1/CBF genes. PLoS One 10(4):e0121041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Champ K, Febres V, Moore G (2007) The role of CBF transcriptional activators in two Citrus species (Poncirus and Citrus) with contrasting levels of freezing tolerance. Physiol Plant 129(3):529–541

    Article  CAS  Google Scholar 

  • Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11(2):113–116

    Article  CAS  Google Scholar 

  • Chaves M, Maroco J, Pereira J (2003) Understanding plant responses to drought—from genes to the whole plant. Funct Plant Biol 30(3):239–264

    Article  CAS  Google Scholar 

  • Chinnusamy V, Zhu J-K, Sunkar R (2010) Gene regulation during cold stress acclimation in plants. Methods Mol Biol 639:39–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clough S, Bent A (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743

    Article  CAS  PubMed  Google Scholar 

  • Curtis M, Grossniklaus U (2003) A Gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol 133(2):462–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El Kayal W, Navarro M, Marque G, Keller G, Marque C, Teulières C (2006) Expression profile of CBF-like transcriptional factor genes from Eucalyptus in response to cold. J Exp Bot 57(10):2455–2469

    Article  CAS  PubMed  Google Scholar 

  • Fang Z, Zhang X, Gao J, Wang P, Xu X, Liu Z, Shen S, Feng B (2015) A Buckwheat (Fagopyrum esculentum) DRE-Binding transcription factor gene, FeDREB1, enhances freezing and drought tolerance of transgenic Arabidopsis. Plant Mol Biol Rep 33(5):1510–1525

    Article  CAS  Google Scholar 

  • FAO (2007) State of the World’s Forests 2007. Electronic Publishing Policy and Support Branch, Communication Division, Rome

  • Fernández M, Villarroel C, Balbontín C, Valenzuela S (2010) Validation of reference genes for real-time qRT-PCR normalization during cold acclimation in Eucalyptus globulus. Trees Struct Funct 24 (6):1109–1116

    Article  Google Scholar 

  • Fernández M, Valenzuela S, Arora R, Chen K (2012) Isolation and characterization of three cold acclimation-responsive dehydrin genes from Eucalyptus globulus. Tree Genet Genom 8(1):149–162

    Article  Google Scholar 

  • Fernández M, Troncoso V, Valenzuela S (2015) Transcriptome profile in response to frost tolerance in Eucalyptus globulus. Plant Mol Biol Rep 33(5):1472–1485

    Article  Google Scholar 

  • Gamboa M, Rasmussen-Poblete S, Valenzuela P, Krauskopf E (2007) Isolation and characterization of a cDNA encoding a CBF transcription factor from E. globulus. Plant Physiol Biochem 45(1):1–5

    Article  CAS  PubMed  Google Scholar 

  • Geldres E, Schlatter J (2004) Crecimiento de las plantaciones de Eucalyptus globulus sobre suelos rojo arcillosos de la provincia de Osorno, Décima Región. Bosque (Valdivia) 25:95–101

    Google Scholar 

  • Gilmour S, Zarka D, Stockinger E, Salazar M, Houghton J, Thomashow M (1998) Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J 16(4):433–442

    Article  CAS  PubMed  Google Scholar 

  • Gilmour S, Fowler S, Thomashow M (2004) Arabidopsis transcriptional activators CBF1, CBF2, and CBF3 have matching functional activities. Plant Mol Biol 54(5):767–781

    Article  CAS  PubMed  Google Scholar 

  • Grattapaglia D (2004) Integrating genomics into Eucalyptus breeding. Genet Mol Res 3(3):369–379

    CAS  PubMed  Google Scholar 

  • Haake V, Cook D, Riechmann J, Pineda O, Thomashow M, Zhang J (2002) Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol 130(2):639–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison S, Mott E, Parsley K, Aspinall S, Gray J, Cottage A (2006) A rapid and robust method of identifying transformed Arabidopsis thaliana seedlings following floral dip transformation. Plant. Methods 2(1):19

    Google Scholar 

  • Iglesias-Trabado G, Wilstermann D (2009) Eucalyptus universalis. Global cultivated eucalypt forests map 2009. Version 1.0.2 In GIT Forestry Consulting’s EUCALYPTOLOGICS: Information resources on Eucalyptus cultivation worldwide. XIII World Forestry Congress, Argentina Mar 29th 2009. Retrieved from http://www.git-forestry.com

  • INFOR (2014) Anuario forestal. Instituto forestal: Boletín estadísico Nº144 (1):159p http://wef.infor.cl/publicaciones/publicaciones.php. Accessed 27 July 2016

  • Jaglo K, Kleff S, Amundsen K, Zhang X, Haake V, Zhang J, Deits T, Thomashow M (2001) Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species. Plant Physiol 127(3):910–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaglo-Ottosen K, Gilmour S, Zarka D, Schabenberger O, Thomashow M (1998) Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280(5360):104–106

    Article  CAS  PubMed  Google Scholar 

  • Jofuku K, den Boer B, Van Montagu M, Okamuro J (1994) Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell 6(9):1211–1225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotech 17(3):287–291

    Article  CAS  Google Scholar 

  • Kim S, Nam K (2010) Physiological roles of ERD10 in abiotic stresses and seed germination of Arabidopsis. Plant Cell Rep 29(2):203–209

    Article  CAS  PubMed  Google Scholar 

  • Kim Y, Lee M, Lee J-H, Lee H-J, Park C-M (2015) The unified ICE–CBF pathway provides a transcriptional feedback control of freezing tolerance during cold acclimation in Arabidopsis. Plant Mol Biol 89(1):187–201

    Article  CAS  PubMed  Google Scholar 

  • Levitt J (1980) Responses of Plants to Environmental Stresses, vol 1. Academic Press, New York, NY

    Google Scholar 

  • Li J, Wang N, Xin H, Li S (2013) Overexpression of VaCBF4, a transcription factor from Vitis amurensis, improves cold tolerance accompanying increased resistance to drought and salinity in Arabidopsis. Plant Mol Biol Rep 31(6):1518–1528

    Article  CAS  Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell Online 10(8):1391–1406

    Article  CAS  Google Scholar 

  • Livak K, Schmittgen T (2001) Analysis of relative gene expression data using real-time quantitative pcr and the 2– ∆∆Ct method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Magome H, Yamaguchi S, Hanada A, Kamiya Y, Oda K (2004) Dwarf and delayed-flowering 1, a novel Arabidopsis mutant deficient in gibberellin biosynthesis because of overexpression of a putative AP2 transcription factor. Plant J 37(5):720–729

    Article  CAS  PubMed  Google Scholar 

  • Magome H, Yamaguchi S, Hanada A, Kamiya Y, Oda K (2008) The DDF1 transcriptional activator upregulates expression of a gibberellin-deactivating gene, GA2ox7, under high-salinity stress in Arabidopsis. Plant J 56(4):613–626

    Article  CAS  PubMed  Google Scholar 

  • Mäntylä E, Lång V, Palva ET (1995) Role of abscisic acid in drought-induced freezing tolerance, cold acclimation, and accumulation of LT178 and RAB18 proteins in Arabidopsis thaliana. Plant Physiol 107(1):141–148

    Article  PubMed  PubMed Central  Google Scholar 

  • McGinnis K, Thomas S, Soule J, Strader L, Zale J, Sun T, Steber C (2003) The Arabidopsis sleepy1 gene encodes a putative f-box subunit of an SCF E3 ubiquitin ligase. Plant Cell 15(5):1120–1130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medina J, Catalá R, Salinas J (2011) The CBFs: Three Arabidopsis transcription factors to cold acclimate. Plant Sci 180(1):3–11

    Article  CAS  PubMed  Google Scholar 

  • Navarro M, Marque G, Ayax C, Keller G, Borges J, Marque C, Teulières C (2009) Complementary regulation of four Eucalyptus CBF genes under various cold conditions. J Exp Bot 60(9):2713–2724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navarro M, Ayax C, Martinez Y, Laur J, El Kayal W, Marque C, Teulières C (2011) Two EguCBF1 genes overexpressed in Eucalyptus display a different impact on stress tolerance and plant development. Plant Biotechnol J 9(1):50–63

    Article  CAS  PubMed  Google Scholar 

  • Novillo F, Alonso JM, Ecker JR, Salinas J (2004) CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis. Proc Natl Acad Sci USA 101(11):3985–3990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novillo F, Medina J, Salinas J (2007) Arabidopsis CBF1 and CBF3 have a different function than CBF2 in cold acclimation and define different gene classes in the CBF regulon. Proc Natl Acad Sci 104(52):21002–21007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohme-Takagi M, Shinshi H (1995) Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell 7(2):173–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng Y-L, Wang Y-S, Cheng H, Sun C-C, Wu P, Wang L-Y, Fei J (2013) Characterization and expression analysis of three CBF/DREB1 transcriptional factor genes from mangrove Avicennia marina. Aquat Toxicol 140–141:68–76

    Article  PubMed  Google Scholar 

  • Pita P, Pardos JA (2001) Growth, leaf morphology, water use and tissue water relations of Eucalyptus globulus clones in response to water deficit. Tree Physiol 21(9):599–607

    Article  CAS  PubMed  Google Scholar 

  • Riechmann J, Meyerowitz E (1998) The AP2/EREBP family of plant transcription factors. Biol Chem 379:633–646

    CAS  PubMed  Google Scholar 

  • Rodziewicz P, Swarcewicz B, Chmielewska K, Wojakowska A, Stobiecki M (2014) Influence of abiotic stresses on plant proteome and metabolome changes. Acta Physiologiae Plantarum 36(1):1–19

    Article  CAS  Google Scholar 

  • Ruelland E, Vaultier M-N, Zachowski A, Hurry V (2009) Chap. 2 Cold signalling and cold acclimation in plants. In: Advances in botanical research, Vol 49. Academic Press, Cambridge, pp 35–150

  • Ryu J, Hong S-Y, Jo S-H, Woo J-C, Lee S, Park C-M (2014) Molecular and functional characterization of cold-responsive C-repeat binding factors from Brachypodium distachyon. BMC Plant Biol 14(1):15

    Article  PubMed  PubMed Central  Google Scholar 

  • Sakuma Y, Liu Q, Dubouzet J, Abe H, Shinozaki K, Yamaguchi-Shinozaki K (2002) DNA-Binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophys Res Commun 290(3):998–1009

    Article  CAS  PubMed  Google Scholar 

  • Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Carninci P, Hayashizaki Y, Shinozaki K (2001) Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 13(1):61–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siddiqua M, Nassuth A (2011) Vitis CBF1 and Vitis CBF4 differ in their effect on Arabidopsis abiotic stress tolerance, development and gene expression. Plant Cell Env 34(8):1345–1359

    Article  CAS  Google Scholar 

  • Stockinger E, Gilmour S, Thomashow M (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci 94(3):1035–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang M, Lü S, Jing Y, Zhou X, Sun J, Shen S (2005) Isolation and identification of a cold-inducible gene encoding a putative DRE-binding transcription factor from Festuca arundinacea. Plant Physiol Biochem 43(3):233–239

    Article  CAS  PubMed  Google Scholar 

  • Thomashow M (1990) Molecular Genetics of Cold Acclimation in Higher Plants. In: John GS (ed) Advances in genetics, Vol 28. Academic Press, Cambridge, pp 99–131

    Google Scholar 

  • Thomashow M (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50(1):571–599

    Article  CAS  PubMed  Google Scholar 

  • Thomashow M (2010) Molecular basis of plant cold acclimation: Insights gained from studying the CBF cold response pathway. Plant Physiol 154(2):571–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomashow M, Gilmour S, Stockinger E, Jaglo-Ottosen K, Zarka D (2001) Role of the Arabidopsis CBF transcriptional activators in cold acclimation. Physiol Plant 112(2):171–175

    Article  CAS  Google Scholar 

  • Tibbits W, White T, Hodge G, Borralho N (2006) Genetic variation in frost resistance of Eucalyptus globulus ssp. globulus assessed by artificial freezing in winter. Aust J Bot 54(6):521–529

    Article  Google Scholar 

  • Tillett R, Wheatley M, Tattersall E, Schlauch K, Cramer G, Cushman J (2012) The Vitis vinifera C-repeat binding protein 4 (VvCBF4) transcriptional factor enhances freezing tolerance in wine grape. Plant Biotechnol J 10(1):105–124

    Article  CAS  PubMed  Google Scholar 

  • Tong Z, Hong B, Yang Y, Li Q, Ma N, Ma C, Gao J (2009) Overexpression of two chrysanthemum DgDREB1 group genes causing delayed flowering or dwarfism in Arabidopsis. Plant Mol Biol 71(1–2):115–129

    Article  CAS  PubMed  Google Scholar 

  • Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16(2):123–132

    Article  CAS  PubMed  Google Scholar 

  • Volker P, Owen J, Borralho N (1994) Genetic variances and covariances for frost tolerance in Eucalyptus globulus and E. nitens. Silvae Genet 43(5–6):366–372

    Google Scholar 

  • Wang Q, Guan Y, Wu Y, Chen H, Chen F, Chu C (2008) Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice. Plant Mol Biol 67(6):589–602

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Liu J, Guo H, He X, Wu W, Du J, Zhang Z, An X (2014) Characterization of two highly similar CBF/DREB1-like genes, PhCBF4a and PhCBF4b, in Populus hopeiensis. Plant Physiol Biochem 83:107–116

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Gao J, Qin X, Shi X, Luo L, Zhang G, Yu H, Li C, Hu M, Liu Q, Xu Y, Chen F (2015) JcCBF2 gene from Jatropha curcas improves freezing tolerance of Arabidopsis thaliana during the early stage of stress. Mol Biol Rep 42(5):937–945

    Article  CAS  PubMed  Google Scholar 

  • Weigel D, Glazebrook J (2002) Arabidopsis: A laboratory manual. Cold Spring Harbor Laboratory Press, NY

    Google Scholar 

  • Welling A, Palva E (2008) Involvement of CBF transcription factors in winter hardiness in birch. Plant Physiol 147(3):1199–1211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wisniewski M, Norelli J, Bassett C, Artlip T, Macarisin D (2011) Ectopic expression of a novel peach (Prunus persica) CBF transcription factor in apple (Malus × domestica) results in short-day induced dormancy and increased cold hardiness. Planta 233(5):971–983

    Article  CAS  PubMed  Google Scholar 

  • Wisniewski M, Nassuth A, Teulières C, Marque C, Rowland J, Cao P, Brown A (2014) Genomics of cold hardiness in woody plants. Crit Rev Plant Sci 33(2–3):92–124

    Article  CAS  Google Scholar 

  • Xiao H, Siddiqua M, Braybrook S, Nassuth A (2006) Three grape CBF/DREB1 genes respond to low temperature, drought and abscisic acid. Plant Cell Env 29(7):1410–1421

    Article  CAS  Google Scholar 

  • Xiao H, Tattersall E, Siddiqua M, Cramer G, Nassuth A (2008) CBF4 is a unique member of the CBF transcription factor family of Vitis vinifera and Vitis riparia. Plant Cell Env 31(1):1–10

    CAS  Google Scholar 

  • Xu M, Li L, Fan Y, Wan J, Wang L (2011) ZmCBF3 overexpression improves tolerance to abiotic stress in transgenic rice (Oryza sativa) without yield penalty. Plant Cell Rep 30(10):1949–1957

    Article  CAS  PubMed  Google Scholar 

  • Xue Y, Wang Y, Peng R, Zhen J, Zhu B, Gao J, Zhao W, Han H, Yao Q (2014) Transcription factor MdCBF1 gene increases freezing stress tolerance in transgenic Arabidopsis thaliana. Biol Plant 58(3):499–506

    Article  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt Stress. Plant Cell 6(2):251–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Fowler S, Cheng H, Lou Y, Rhee S, Stockinger E, Thomashow M (2004) Freezing-sensitive tomato has a functional CBF cold response pathway, but a CBF regulon that differs from that of freezing-tolerant Arabidopsis. Plant J 39(6):905–919

    Article  CAS  PubMed  Google Scholar 

  • Zhou M, Shen C, Wu L, Tang K, Lin J (2011) CBF-dependent signaling pathway: A key responder to low temperature stress in plants. Crit Rev Biotechnol 31(2):186–192

    Article  CAS  PubMed  Google Scholar 

  • Zhou M, Xu M, Wu L, Shen C, Ma H, Lin J (2014) CbCBF from Capsella bursa-pastoris enhances cold tolerance and restrains growth in Nicotiana tabacum by antagonizing with gibberellin and affecting cell cycle signaling. Plant Mol Biol 85(3):259–275

    Article  CAS  PubMed  Google Scholar 

  • Zhou M, Chen H, Wei D, Ma H, Lin J (2017) Arabidopsis CBF3 and DELLAs positively regulate each other in response to low temperature. Sci Rep 7:39819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhuang L, Yuan X, Chen Y, Xu B, Yang Z, Huang B (2015) PpCBF3 from cold-tolerant Kentucky Bluegrass involved in freezing tolerance associated with up-regulation of cold-related genes in transgenic Arabidopsis thaliana. PLoS One 10(7):e0132928

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by CORFO 12FBCT 16466 and Genómica Forestal S.A. A CONICYT Ph. D. scholarship to DN-C. Bioforest S.A. provided the E. globulus plant material used in this study. The technical assistance of Ms. Valeria Neira for sample handling and physiological data acquisition is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sofía Valenzuela.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by F. Canovas.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Navarrete-Campos, D., Le Feuvre, R., Balocchi, C. et al. Overexpression of three novel CBF transcription factors from Eucalyptus globulus improves cold tolerance on transgenic Arabidopsis thaliana . Trees 31, 1041–1055 (2017). https://doi.org/10.1007/s00468-017-1529-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-017-1529-3

Keywords

Navigation