Skip to main content
Log in

Efficient somatic embryogenesis from meristematic explants in grapevine (Vitis vinifera L.) cv. Chardonnay: an improved protocol

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

The use of elevated concentrations of hormones enables effective somatic embryogenesis from nodes of in vitro plants and do not impair embryo viability, in grapevine, a clonally propagated woody crop.

Abstract

Somatic embryogenesis (SE) has great importance for propagation and transformation of woody perennial plants. In Vitis vinifera L., the most cultivated grape species, somatic embryos are generally obtained from floral organs (stamens, ovaries, whole flowers) not easily available. Moreover, the efficiency of SE induction from reproductive organs greatly depends on the physiological state of explants which is hardly controlled. We report here on a culture system for the efficient and reproducible induction of SE and the production of good quality embryos, based on the use of nodal explants excised from in vitro grown plantlets easily obtained all year round. This method involves a first culture step on a callus inducing medium (CIM) containing unusually elevated concentrations of auxin and cytokinin. SE efficiencies from 10.3 to 20.2 % were reproducibly attained with a combination of 18 μM of 2,4-dichlorophenoxyacetic acid (2,4-D) and 9 μM of 6-benzylaminopurine (BAP) in CIM. Callus formation and embryogenesis induction were preferentially observed in the bud region. Moreover, we showed that internodal stem segments, petioles and leaf fragments were not amenable to SE under the same conditions, strongly suggesting that axillary meristems are involved in the embryogenic response. In addition, we verified that high concentrations of 2,4-D and BAP in CIM did not affect the viability of embryos further generated, nor hamper their regeneration into whole plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

2,4-D:

2,4-Dichlorophenoxyacetic acid

ANOVA:

Analysis of variance

BAP:

6-Benzylaminopurine

CIM:

Callus inducing medium

IAA:

Indole-3-acetic acid

MS:

Murashige and Skoog

NOA:

2-Naphtoxyacetic acid

PGR:

Plant growth regulator

SE:

Somatic embryogenesis

References

  • Acanda Y, Prado MJ, González MV, Rey M (2013) Somatic embryogenesis from stamen filaments in grapevine (Vitis vinifera L. cv. Mencía): changes in ploidy level and nuclear DNA content. In Vitro Cell Dev Biol Plant 49:276–284

    Article  CAS  Google Scholar 

  • Acanda Y, Martínez Ó, Prado MJ, González MV, Rey M (2014) EMS mutagenesis and qPCR-HRM prescreening for point mutations in an embryogenic cell suspension of grapevine. Plant Cell Rep 33:471–481

    Article  CAS  PubMed  Google Scholar 

  • Agüero CB, Meredith CP, Dandekar AM (2006) Genetic transformation of Vitis vinifera L. cvs Thompson Seedless and Chardonnay with the pear PGIP and GFP encoding genes. Vitis 45:1–8

    Google Scholar 

  • Atehnkeng J, Adetimirin VO, Ng SYC (2006) Exploring the African cassava (Manihot esculenta Crantz) germplasm for somatic embryogenic competence. Afr J Biotechnol 5:1324–1329

    Google Scholar 

  • Burger P, Bouquet A, Striem MJ (2009) Grape breeding. In: Mohan Jain S, Priyadarshan PM (eds) Breeding Plantation Tree Crops: Tropical Species. Springer, New York, pp 161–189

  • Cardoso HG, Campos MC, Pais MS, Peixe A (2010) Use of morphometric parameters for tracking ovule and microspore evolution in grapevine (Vitis vinifera L., cv. “Aragonez”) and evaluation of their potential to improve in vitro somatic embryogenesis efficiency from gametophyte tissues. In Vitro Cell Dev Biol Plant 46:499–508

    Article  Google Scholar 

  • Chetty CC, Rossin CB, Gruissem W, Vanderschuren H, Rey MEC (2013) Empowering biotechnology in southern Africa: establishment of a robust transformation platform for the production of transgenic industry-preferred cassava. New Biotechnol 30:136–143

    Article  CAS  Google Scholar 

  • Corredoira E, San-José MC, Vieitez AM (2012) Induction of somatic embryogenesis from different explants of shoot cultures derived from young Quercus alba trees. Trees 26:881–891

    Article  Google Scholar 

  • Dai L, Zhou Q, Li R, Du Y, He J, Wang D, Cheng S, Zhang J, Wang Y (2015) Establishment of a picloram-induced somatic embryogenesis system in Vitis vinifera cv. chardonnay and genetic transformation of a stilbene synthase gene from wild-growing Vitis species. Plant Cell Tiss Org Cult 121:397–412

    Article  CAS  Google Scholar 

  • Das D, Reddy M, Upadhyaya K, Sopory S (2002) An efficient leaf-disc culture method for the regeneration via somatic embryogenesis and transformation of grape (Vitis vinifera L.). Plant Cell Rep 20:999–1005

    Article  CAS  Google Scholar 

  • Dhekney SA, Li ZT, Compton ME, Gray DJ (2009) Optimizing initiation and maintenance of Vitis embryogenic cultures. Hort Sci 44:1400–1406

    Google Scholar 

  • Gaj MD (2004) Factors influencing somatic embryogenesis induction and plant regeneration with particular reference to Arabidopsis thaliana (L.) Heynh. Plant Growth Reg 43:27–47

    Article  CAS  Google Scholar 

  • Gambino G, Ruffa P, Vallania R, Gribaudo I (2007) Somatic embryogenesis from whole flowers, anthers and ovaries of grapevine (Vitis spp.). Plant Cell Tiss. Org Cult 90:79–83

    Article  CAS  Google Scholar 

  • Gribaudo I, Gambino G, Vallania R (2004) Somatic embryogenesis from grapevine anthers: the optimal developmental stage for collecting explants. Am J Enol Vitic 55:427–430

    Google Scholar 

  • Ikeda-Iwai M, Umehara M, Satoh S, Kamada H (2003) Stress-induced somatic embryogenesis in vegetative tissues of Arabidopsis thaliana. Plant J 34:107–114

    Article  CAS  PubMed  Google Scholar 

  • Jelly NS, Schellenbaum P, Walter B, Maillot P (2012) Transient expression of artificial microRNAs targeting Grapevine fanleaf virus and evidence for RNA silencing in grapevine somatic embryos. Transgenic Res 21:1319–1327

    Article  CAS  PubMed  Google Scholar 

  • Jelly NS, Valat L, Walter B, Maillot P (2014) Transient expression assays in grapevine: a step towards genetic improvement. Plant Biotech. J 12:1231–1245

    Article  Google Scholar 

  • Jiménez VM (2005) Involvement of plant hormones and plant growth regulators on in vitro somatic embryogenesis. Plant Growth Reg 47:91–110

    Article  Google Scholar 

  • Joubert DA, de Lorenzo G, Vivier MA (2013) Regulation of the grapevine polygalacturonase-inhibiting protein encoding gene: expression pattern, induction profile and promoter analysis. J Plant Res 126:267–281

    Article  CAS  PubMed  Google Scholar 

  • Karami O, Saidi A (2010) The molecular basis for stress-induced acquisition of somatic embryogenesis. Mol Biol Rep 37:2493–2507

    Article  CAS  PubMed  Google Scholar 

  • Kikkert JR, Striem MJ, Vidal JR, Wallace PG, Barnard J, Reisch BI (2005) Long-term study of somatic embryogenesis from anthers and ovaries of 12 grapevine (Vitis sp.) genotypes. In Vitro Cell Dev Biol Plant 41:232–239

    Article  Google Scholar 

  • Kitamiya E, Suzuki S, Sano T, Nagata T (2000) Isolation of two genes that were induced upon the initiation of somatic embryogenesis on carrot hypocotyls by high concentrations of 2, 4-D. Plant Cell Rep 19:551–557

    Article  CAS  Google Scholar 

  • Lacombe T, Audeguin L, Boselli M, Bucchetti B, Cabello F, Chatelet P, Crespan M, D’Onofrio C, Eiras Dias J, Ercisli S, Gardiman M, Grando MS, Imazio S, Jandurova O, Jung A, Kiss E, Kozma P, Maul E, Maghradze D, Martinez MC, Munoz G, Patkova JK, Pejic I, Peterlunger E, Pitsoli D, Preiner D, Raimondi S, Regner F, Savin G, Savvides S, Schneider A, Spring JL, Szoke A, Veres A, Boursiquot JM, Bacilieri R, This P (2011) Grapevine European Catalogue: towards a comprehensive list. Vitis 50:65–68

    Google Scholar 

  • Lelu-Walter MA, Thompson D, Harvengt L, Sanchez L, Toribio M, Pâques LE (2013) Somatic embryogenesis in forestry with a focus on Europe: state-of-the-art, benefits, challenges and future direction. Tree Genet Genomes 9:883–899

    Article  Google Scholar 

  • Li ZT, Jayasankar S, Gray DJ (2001) Expression of a bifunctional green fluorescent protein (GFP) fusion marker under the control of three constitutive promoters and enhanced derivatives in transgenic grape (Vitis vinifera). Plant Sci 160:877–887

    Article  CAS  PubMed  Google Scholar 

  • Li ZT, Jayasankar S, Gray DJ (2004) Bi-directional duplex promoters with duplicated enhancers significantly increase transgene expression in grape and Tobacco. Transgenic Res 13:143–154

    Article  CAS  PubMed  Google Scholar 

  • Li ZT, Dhekney SA, Gray DJ (2011) Use of the VvMybA1 gene for non-destructive quantification of promoter activity via color histogram analysis in grapevine (Vitis vinifera) and Tobacco. Transgenic Res 20:1087–1097

    Article  CAS  PubMed  Google Scholar 

  • Li ZT, Kim KH, Jasinski JR, Creech MR, Gray DJ (2012) Large-scale characterization of promoters from grapevine (Vitis spp.) using quantitative anthocyanin and GUS assay systems. Plant Sci 196:132–142

    Article  CAS  PubMed  Google Scholar 

  • Maillot P, Kieffer F, Walter B (2006) Somatic embryogenesis from stem nodal sections of grapevine. Vitis 45:185–189

    Google Scholar 

  • Maillot P, Lebel S, Schellenbaum P, Jacques A, Walter B (2009) Differential regulation of SERK, LEC1-Like and Pathogenesis-Related genes during indirect secondary somatic embryogenesis in grapevine. Plant Physiol Bioch 47:743–752

    Article  CAS  Google Scholar 

  • Martinelli L, Gribaudo I (2009) Strategies for effective somatic embryogenesis in grapevine: an appraisal. In: Roubelakis-Angelakis (ed) Grapevine Molecular Physiology and Biotechnology. Springer, Netherlands, pp 461–493

  • Martinelli L, Gribaudo I, Bertoldi D, Candioli A, Poletti V (2001) High efficiency somatic embryogenesis and plant germination in grapevine cultivars Chardonnay and Brachetto a grappolo lungo. Vitis 40:111–116

    CAS  Google Scholar 

  • Matsuta N, Hirabayashi T (1989) Embryogenic cell lines from somatic embryos of grape (Vitis vinifera L.). Plant Cell Rep 7:684–687

    CAS  PubMed  Google Scholar 

  • Nakano M, Sakakibara T, Watanabe Y, Mii M (1997) Establishment of embryogenic cultures in several cultivars of Vitis vinifera and V. x labruscana. Vitis 36:141–145

    Google Scholar 

  • Nakano M, Watanabe Y, Hoshino Y (2000) Histological examination of callogenesis and adventitious embryogenesis in immature ovary culture of grapevine (Vitis vinifera L.). J Hortic Sci Biotech 75:154–160

    Article  Google Scholar 

  • Nolan KE, Irwanto RR, Rose RJ (2003) Auxin up-regulates MtSERK1 expression in both Medicago truncatula root-forming and embryogenic cultures. Plant Physiol 133:218–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nyaboga E, Njiru J, Nguu E, Gruissem W, Vanderschuren H, Tripathi L (2013) Unlocking the potential of tropical root crop biotechnology in east Africa by establishing a genetic transformation platform for local farmer-preferred cassava cultivars. Front Plant Sci 4:526

    Article  PubMed  PubMed Central  Google Scholar 

  • Oláh R, Zok A, Pedryc A, Howard S, Kovács LG (2009) Somatic embryogenesis in a broad spectrum of grape genotypes. Scientia Hortic 120:134–137

    Article  Google Scholar 

  • Opabode JT, Oyelakin OO, Akinyemiju OA, Ingelbrecht I (2013) Primary somatic embryos from axillary meristems and immature leaf lobes of selected African cassava varieties. British Biotechnol J 3:263–273

    Article  Google Scholar 

  • Perrin M, Gertz C, Masson JE (2004) High efficiency initiation of regenerable embryogenic callus from anther filaments of 19-grapevine genotypes grown worldwide. Plant Sci 167:1343–1349

    Article  CAS  Google Scholar 

  • Pinto-Sintra AL (2007) Establishment of embryogenic cultures and plant regeneration in the Portuguese cultivar ‘Touriga Nacional’of Vitis vinifera L. Plant Cell Tiss Org Cult 88:253–265

    Article  Google Scholar 

  • Rai MK, Shekhawat NS (2014) Recent advances in genetic engineering for improvement of fruit crops. Plant Cell Tiss Org Cult 116:1–15

    Article  CAS  Google Scholar 

  • Rajasekaran K, Mullins MG (1979) Embryos and plantlets from cultured anthers of hybrid grapevines. J Exp Bot 30:399–407

    Article  Google Scholar 

  • Rajasekaran K, Mullins MG (1983) Influence of genotype and sex-expression on formation of plantlets by cultured anthers of grapevines. Agronomie 3:233–238

    Article  Google Scholar 

  • Reisch BI, Owens CL, Cousins PS (2012) Grape. In: Badenes ML, Byrne DH (eds) Fruit breeding. Springer, New York, pp 225–262

    Chapter  Google Scholar 

  • Rose RJ, Nolan KE (2006) Invited review: genetic regulation of somatic embryogenesis with particular reference to Arabidopsis thaliana and Medicago truncatula. In Vitro Cell Dev Biol Plant 42:473–481

    Article  CAS  Google Scholar 

  • San-José MC, Corredoira E, Martínez MT, Vidal N, Valladares S, Mallón R, Vieitez AM (2010) Shoot apex explants for induction of somatic embryogenesis in mature Quercus robur L. trees. Plant Cell Rep 29:661–671

    Article  PubMed  Google Scholar 

  • Sharma SK, Bryan GJ, Millam S (2007) Auxin pulse treatment holds the potential to enhance efficiency and practicability of somatic embryogenesis in potato. Plant Cell Rep 26:945–950

    Article  CAS  PubMed  Google Scholar 

  • Singh M, Jaiswal U, Jaiswal VS (2005) In vitro regeneration and improvement in tropical fruit trees: an assessment. In: Srivastava PS, Narula A, Srivastava S (eds) Plant Biotechnology and Molecular Markers. Springer, Netherlands, pp 228–243

    Chapter  Google Scholar 

  • Srinivasan C, Mullins MG (1980) High-frequency somatic embryo production from unfertilized ovules of grapes. Sci Hort 13:245–252

    Article  Google Scholar 

  • Stamp JA, Meredith CP (1988) Somatic embryogenesis from leaves and anthers of grapevine. Sci Hort 35:235–250

    Article  Google Scholar 

  • Vidal JR, Rama J, Taboada L, Martin C, Ibañez M, Segura A, González-Benito ME (2009) Improved somatic embryogenesis of grapevine (Vitis vinifera) with focus on induction parameters and efficient plant regeneration. Plant Cell Tiss Org Cult 96:85–94

    Article  Google Scholar 

  • von Arnold S, Sabala I, Bozhkov P, Dyachok J, Filonova L (2002) Developmental pathways of somatic embryogenesis. Plant Cell Tiss Org Cult 69:233–249

    Article  Google Scholar 

  • Zavattieri MA, Frederico AM, Lima M, Sabino R, Arnholdt-Schmitt B (2010) Induction of somatic embryogenesis as an example of stress-related plant reactions. Elec J Biotechnol 13:12–13

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascale Maillot.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by J. Lin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

468_2016_1374_MOESM1_ESM.doc

Results of the analysis of variance (ANOVA) conducted to compare the effect of the callus induction media CIM1 (9 µM 2,4-D/4.5 µM BAP) and CIM2 (18 µM 2,4-D/9 µM BAP) on the efficiency of somatic embryogenesis (SE) induction (DOC 31 kb)

468_2016_1374_MOESM2_ESM.doc

Results of the analysis of variance (ANOVA) conducted to compare the effect of the callus induction media CIM2 (18 µM 2,4-D/9 µM BAP), CIM3 (27 µM 2,4-D/13.5 µM BAP) and CIM4 (36 µM 2,4-D/18 µM BAP) on the efficiency of somatic embryogenesis (SE) induction (DOC 31 kb)

468_2016_1374_MOESM3_ESM.doc

Influence of callus induction media (CIM) containing increasing concentrations of plant growth regulators (PGRs) on the efficiency of somatic embryogenesis (SE) induction at the individual level: CIM1 (9 µM 2,4-D/4.5 µM BAP), CIM2 (18 µM 2,4-D/9 µM BAP), CIM3 (27 µM 2,4-D/13.5 µM BAP) and CIM4 (36 µM 2,4-D/18 µM BAP). SE efficiency is defined as the percentage of explants having produced embryogenic structures. Exp. = Experiment. No. = Number. Eff. = Efficiency. * = mean of individual efficiencies in each experiment (DOC 107 kb)

468_2016_1374_MOESM4_ESM.doc

Results of the analysis of variance (ANOVA) conducted to compare the effect of the callus induction media CIM1 (9 µM 2,4-D/4.5 µM BAP), CIM2 (18 µM 2,4-D/9 µM BAP), CIM3 (27 µM 2,4-D/13.5 µM BAP) and CIM4 (36 µM 2,4-D/18 µM BAP) on the regeneration ability of generated embryos (DOC 31 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maillot, P., Deglène-Benbrahim, L. & Walter, B. Efficient somatic embryogenesis from meristematic explants in grapevine (Vitis vinifera L.) cv. Chardonnay: an improved protocol. Trees 30, 1377–1387 (2016). https://doi.org/10.1007/s00468-016-1374-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-016-1374-9

Keywords

Navigation